mirror of
https://github.com/open-mmlab/mmdeploy.git
synced 2025-01-14 08:09:43 +08:00
* first * fix0 * fix1 * dirty work * wip * add allocator * finally done! * lint * fix lint * better gather * better onnx2ncnn * fix expand * [Fix] NCNN TensorSlice op bugs (#42) * fix custom ops support, fix multiple mark bug, add name mapping * check if the value_info need to be added * remove unnecessary print * add nms implement * two stage split wip * add two stage split * add split retinanet visualize * add two stage split (wip) * finish two stage split * fix lint * move parse string to mmdeploy.utils * add calib data generator * create calib dataset * finish end2end int8 * add split two stage tensorrt visualize * fix tensorslice bugs * fix lint * fix clang-format * remove comments * int param * fix lint Co-authored-by: grimoire <yaoqian@sensetime.com> * add two stage ncnn support * remove unused ops * git unused config * remove no_grad, should add in refactor * add ncnn wrapper * fix lint * size return tuple * Resolve grammar error * Fix lint * Trim Trailing Whitespace * fix trim * update wrapper * remove logs * remove * csrc optimize Co-authored-by: hanrui1sensetime <83800577+hanrui1sensetime@users.noreply.github.com>
245 lines
6.6 KiB
C++
Executable File
245 lines
6.6 KiB
C++
Executable File
#include "gather.h"
|
|
|
|
#include "../ncnn_ops_definer.h"
|
|
|
|
namespace mmlab {
|
|
using namespace ncnn;
|
|
DEFINE_LAYER_CREATOR(Gather)
|
|
DEFINE_NCNN_OPS(Gather, Gather)
|
|
Gather::Gather() {
|
|
one_blob_only = false;
|
|
support_inplace = false;
|
|
}
|
|
|
|
int Gather::load_param(const ParamDict &pd) {
|
|
axis = pd.get(0, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int Gather::forward(const std::vector<Mat> &bottom_blobs,
|
|
std::vector<Mat> &top_blobs, const Option &opt) const {
|
|
const Mat &bottom_blob = bottom_blobs[0];
|
|
const Mat &indices = bottom_blobs[1];
|
|
int dims = bottom_blob.dims;
|
|
int indices_dims = indices.dims;
|
|
size_t elemsize = bottom_blob.elemsize;
|
|
int positive_axis = axis < 0 ? dims + axis : axis;
|
|
Mat &top_blob = top_blobs[0];
|
|
|
|
const float *indices_ptr = indices;
|
|
|
|
if (dims == 1 && indices_dims == 1) // positive_axis == 0
|
|
{
|
|
int w = indices.w;
|
|
top_blob.create(w, elemsize, opt.blob_allocator);
|
|
if (top_blob.empty()) {
|
|
return -100;
|
|
}
|
|
const float *ptr = bottom_blob;
|
|
float *outptr = top_blob;
|
|
for (int i = 0; i < w; i++) {
|
|
float indice = indices_ptr[i];
|
|
outptr[i] = ptr[(int)(indice + 0.5)];
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (dims == 1 && indices_dims == 2) // positive_axis == 0
|
|
{
|
|
int w = indices.w;
|
|
int h = indices.h;
|
|
top_blob.create(w, h, elemsize, opt.blob_allocator);
|
|
if (top_blob.empty()) {
|
|
return -100;
|
|
}
|
|
const float *ptr = bottom_blob;
|
|
float *outptr = top_blob;
|
|
for (int j = 0; j < h; j++) {
|
|
for (int i = 0; i < w; i++) {
|
|
int indice = (int)(indices_ptr[j * w + i] + 0.5);
|
|
outptr[j * w + i] = ptr[indice];
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
if (dims == 1 && indices_dims == 3) // positive_axis == 0
|
|
{
|
|
int c = indices.c;
|
|
int w = indices.w;
|
|
int h = indices.h;
|
|
top_blob.create(c, w, h, elemsize, opt.blob_allocator);
|
|
if (top_blob.empty()) {
|
|
return -100;
|
|
}
|
|
const float *ptr = bottom_blob;
|
|
|
|
for (int page = 0; page < c; page++) {
|
|
indices_ptr = indices.channel(page);
|
|
float *outptr = top_blob.channel(page);
|
|
for (int j = 0; j < h; j++) {
|
|
for (int i = 0; i < w; i++) {
|
|
int indice = (int)(indices_ptr[j * w + i] + 0.5);
|
|
outptr[j * w + i] = ptr[indice];
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (dims == 2 && positive_axis == 0 && indices_dims == 1) {
|
|
int w = bottom_blob.w;
|
|
int h = bottom_blob.h;
|
|
top_blob.create(w, indices.w, elemsize, opt.blob_allocator);
|
|
// w -> w
|
|
// h -> indices.w
|
|
// h * w -> indices.w * w
|
|
if (top_blob.empty()) {
|
|
return -100;
|
|
}
|
|
const float *ptr = bottom_blob;
|
|
float *outptr = top_blob;
|
|
for (int i = 0; i < indices.w; i++) {
|
|
const int selected = (int)(indices_ptr[i] + 0.5);
|
|
memcpy(top_blob.row(i), bottom_blob.row(selected), w * elemsize);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (dims == 2 && positive_axis == 1 && indices_dims == 1) {
|
|
int w = bottom_blob.w;
|
|
int h = bottom_blob.h;
|
|
top_blob.create(indices.w, h, elemsize, opt.blob_allocator);
|
|
// w -> h
|
|
// h -> indices.w
|
|
// h * w -> indices.w * h
|
|
if (top_blob.empty()) {
|
|
return -100;
|
|
}
|
|
const float *ptr = bottom_blob;
|
|
float *outptr = top_blob;
|
|
for (int j = 0; j < h; j++) {
|
|
for (int i = 0; i < indices.w; i++) {
|
|
int selected = (int)(indices_ptr[i] + 0.5);
|
|
outptr[j * indices.w + i] = ptr[j * w + selected];
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
if (dims == 2 && positive_axis == 0 && indices_dims == 2) {
|
|
int w = bottom_blob.w;
|
|
int h = bottom_blob.h;
|
|
top_blob.create(w, indices.w, indices.h, elemsize, opt.blob_allocator);
|
|
|
|
if (top_blob.empty()) {
|
|
return -100;
|
|
}
|
|
const float *ptr = bottom_blob;
|
|
|
|
for (int k = 0; k < indices.h; k++) {
|
|
float *outptr = top_blob.channel(k);
|
|
for (int i = 0; i < indices.w; i++) {
|
|
for (int j = 0; j < w; j++) {
|
|
int selected = (float)(indices_ptr[k * indices.w + i] + 0.5);
|
|
outptr[i * w + j] = ptr[selected * w + j];
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (dims == 2 && positive_axis == 1 && indices_dims == 2) {
|
|
int w = bottom_blob.w;
|
|
int h = bottom_blob.h;
|
|
top_blob.create(h, indices.w, indices.h, elemsize, opt.blob_allocator);
|
|
|
|
if (top_blob.empty()) {
|
|
return -100;
|
|
}
|
|
const float *ptr = bottom_blob;
|
|
for (int k = 0; k < indices.h; k++) {
|
|
float *outptr = top_blob.channel(k);
|
|
for (int i = 0; i < indices.w; i++) {
|
|
for (int j = 0; j < h; j++) {
|
|
int selected = (int)(indices_ptr[k * indices.w + i] + 0.5);
|
|
outptr[i * h + j] = ptr[j * w + selected];
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (dims == 3 && positive_axis == 0 && indices_dims == 1) {
|
|
int w = bottom_blob.w;
|
|
int h = bottom_blob.h;
|
|
int channels = bottom_blob.c;
|
|
top_blob.create(w, h, indices.w, elemsize, opt.blob_allocator);
|
|
|
|
if (top_blob.empty()) {
|
|
return -100;
|
|
}
|
|
for (int i = 0; i < indices.w; i++) {
|
|
int selected = (int)(indices_ptr[i] + 0.5);
|
|
const unsigned char *ptr = bottom_blob.channel(selected);
|
|
unsigned char *outptr = top_blob.channel(i);
|
|
|
|
memcpy(outptr, ptr, w * h * elemsize);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
if (dims == 3 && positive_axis == 1 && indices_dims == 1) {
|
|
int w = bottom_blob.w;
|
|
int h = bottom_blob.h;
|
|
int channels = bottom_blob.c;
|
|
top_blob.create(w, channels, indices.w, elemsize, opt.blob_allocator);
|
|
#pragma omp parallel for num_threads(opt.num_threads)
|
|
// use parallel programming
|
|
for (int i = 0; i < indices.w; i++) {
|
|
int selected = (int)(indices_ptr[i] + 0.5);
|
|
float *outptr = top_blob.channel(i);
|
|
for (int j = 0; j < channels; j++) {
|
|
const float *ptr = bottom_blob.channel(j);
|
|
for (int k = 0; k < w; k++) {
|
|
outptr[j * w + k] = ptr[selected * w + k];
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (dims == 3 && positive_axis == 2 && indices_dims == 1) {
|
|
fprintf(stderr, "gather: dim = 3\n");
|
|
int w = bottom_blob.w;
|
|
int h = bottom_blob.h;
|
|
int channels = bottom_blob.c;
|
|
top_blob.create(h, channels, indices.w, elemsize, opt.blob_allocator);
|
|
#pragma omp parallel for num_threads(opt.num_threads)
|
|
// use parallel programming
|
|
for (int i = 0; i < indices.w; i++) {
|
|
int selected = (int)(indices_ptr[i] + 0.5);
|
|
float *outptr = top_blob.channel(i);
|
|
for (int j = 0; j < channels; j++) {
|
|
const float *ptr = bottom_blob.channel(j);
|
|
for (int k = 0; k < h; k++) {
|
|
outptr[j * h + k] = ptr[k * w + selected];
|
|
}
|
|
}
|
|
}
|
|
fprintf(stderr, "top_blob.size: (%d %d %d)\n", top_blob.c, top_blob.h,
|
|
top_blob.w);
|
|
return 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
} // namespace mmlab
|