2.7 KiB
How to Deploy ncnn Models in deploy_prototype
This tutorial is based on Linux systems like Ubuntu-16.04.
Before starting this tutorial, you should make sure that the prerequisites mentioned by deploy_prototype/README.md
are prepared.
Preparation
-
Download VulkanTools for the compilation of ncnn.
wget https://sdk.lunarg.com/sdk/download/1.2.176.1/linux/vulkansdk-linux-x86_64-1.2.176.1.tar.gz?Human=true -O vulkansdk-linux-x86_64-1.2.176.1.tar.gz tar -xf vulkansdk-linux-x86_64-1.2.176.1.tar.gz export VULKAN_SDK=$(pwd)/1.2.176.1/x86_64
-
Prepare ncnn Framework
- Download ncnn source code of tag 20210507
git clone -b 20210507 git@github.com:Tencent/ncnn.git
- Make install ncnn library
cd ncnn mkdir build cmake -DNCNN_VULKAN=ON -DNCNN_SYSTEM_GLSLANG=ON -DNCNN_BUILD_EXAMPLES=ON -DNCNN_PYTHON=ON -DNCNN_BUILD_TOOLS=ON -DNCNN_BUILD_BENCHMARK=ON -DNCNN_BUILD_TESTS=ON .. make install
- Install pyncnn module
cd ncnn/python pip install .
- Download ncnn source code of tag 20210507
-
Build ncnn backend ops of deploy_prototype
cd deploy_prototype mkdir build cd build cmake -DBUILD_NCNN_OPS=ON -DNCNN_DIR=${PATH_TO_NCNN}/ncnn ..
The
${PATH_TO_NCNN}
refers as the root directory of ncnn source code. -
Install mmdeploy module
cd deploy_prototype python setup.py develop
Or you will fail on
No module named mmdeploy
FAQs
-
When running ncnn models for inference with custom ops, it fails and shows the error message like:
TypeError: register mm custom layers(): incompatible function arguments. The following argument types are supported: 1.(ar0: ncnn:Net) -> int Invoked with: <ncnn.ncnn.Net object at 0x7f7fc4038bb0>
This is because of the failure to bind ncnn C++ library to pyncnn. You should build pyncnn from C++ ncnn source code, but not by
pip install
-
When run the tools/deploy.py, it fails:
Undefined symbol: __cpu_model
This is a bug of gcc-5, you should update to
gcc >= 6
Performance Test
MMCls
This table shows the performance of mmclassification models deployed on ncnn.
Dataset: ImageNet val
dataset.
Model | Top-1(%) | Top-5(%) |
---|---|---|
MobileNetV2 | 71.86 (71.86) | 90.42 (90.42) |
ResNet | 69.88 (70.07) | 89.34 (89.44) |
ResNeXt | 78.61 (78.71) | 94.17 (94.12) |
The data in the parentheses is the inference result from pytorch. (According to: mmcls model_zoo docs)