mmdeploy/tests/test_csrc/graph/test_crnn.cpp

71 lines
1.5 KiB
C++

// Copyright (c) OpenMMLab. All rights reserved.
// clang-format off
#include "catch.hpp"
// clang-format on
#include <fstream>
#include <numeric>
#include <opencv2/imgcodecs.hpp>
#include "archive/json_archive.h"
#include "core/graph.h"
#include "core/mat.h"
#include "core/registry.h"
const auto json_str = R"({
"pipeline": {
"tasks": [
{
"name": "load",
"type": "Task",
"module": "LoadImage",
"input": ["input"],
"output": ["img"]
},
{
"name": "cls",
"type": "Inference",
"params": {
"model": "../../config/text-recognizer/crnn",
"batch_size": 1
},
"input": ["img"],
"output": ["text"]
}
],
"input": ["input"],
"output": ["img", "text"]
}
}
)";
TEST_CASE("test crnn", "[crnn]") {
using namespace mmdeploy;
auto json = nlohmann::json::parse(json_str);
auto value = mmdeploy::from_json<mmdeploy::Value>(json);
value["context"]["device"] = Device(0);
value["context"]["stream"] = Stream::GetDefault(Device(0));
auto pipeline = Registry<graph::Node>::Get().GetCreator("Pipeline")->Create(value);
REQUIRE(pipeline);
graph::TaskGraph graph;
pipeline->Build(graph);
const auto img_list = "../crnn/imglist.txt";
Device device{"cpu"};
auto stream = Stream::GetDefault(device);
std::ifstream ifs(img_list);
std::string path;
for (int image_id = 0; ifs >> path; ++image_id) {
auto output = graph.Run({{{"filename", path}}});
REQUIRE(output);
INFO("output: {}", output.value());
}
}