mmdeploy/csrc/preprocess/cuda/image2tensor_impl.cpp

59 lines
1.8 KiB
C++

// Copyright (c) OpenMMLab. All rights reserved.
#include <cuda_runtime.h>
#include "core/utils/device_utils.h"
#include "preprocess/transform/image2tensor.h"
namespace mmdeploy {
namespace cuda {
template <typename T>
void Transpose(const T* src, int height, int width, int channels, T* dst, cudaStream_t stream);
class ImageToTensorImpl final : public ::mmdeploy::ImageToTensorImpl {
public:
explicit ImageToTensorImpl(const Value& args) : ::mmdeploy::ImageToTensorImpl(args) {}
protected:
Result<Tensor> HWC2CHW(const Tensor& tensor) override {
OUTCOME_TRY(auto src_tensor, MakeAvailableOnDevice(tensor, device_, stream_));
auto h = tensor.shape(1);
auto w = tensor.shape(2);
auto c = tensor.shape(3);
auto hw = h * w;
Tensor dst_tensor(src_tensor.desc());
dst_tensor.Reshape({1, c, h, w});
auto stream = ::mmdeploy::GetNative<cudaStream_t>(stream_);
if (DataType::kINT8 == tensor.data_type()) {
auto input = src_tensor.data<uint8_t>();
auto output = dst_tensor.data<uint8_t>();
Transpose(input, (int)h, (int)w, (int)c, output, stream);
} else if (DataType::kFLOAT == tensor.data_type()) {
auto input = src_tensor.data<float>();
auto output = dst_tensor.data<float>();
Transpose(input, (int)h, (int)w, (int)c, output, stream);
} else {
assert(0);
}
return dst_tensor;
}
};
class ImageToTensorImplCreator : public Creator<::mmdeploy::ImageToTensorImpl> {
public:
const char* GetName() const override { return "cuda"; }
int GetVersion() const override { return 1; }
ReturnType Create(const Value& cfg) override { return std::make_unique<ImageToTensorImpl>(cfg); }
};
} // namespace cuda
} // namespace mmdeploy
using ::mmdeploy::ImageToTensorImpl;
using ::mmdeploy::cuda::ImageToTensorImplCreator;
REGISTER_MODULE(ImageToTensorImpl, ImageToTensorImplCreator);