169 lines
6.2 KiB
Python
169 lines
6.2 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import argparse
|
|
import os
|
|
|
|
from mmcv import DictAction
|
|
from mmcv.parallel import MMDataParallel
|
|
|
|
from mmdeploy.apis import build_task_processor
|
|
from mmdeploy.utils.config_utils import load_config
|
|
from mmdeploy.utils.device import parse_device_id
|
|
from mmdeploy.utils.timer import TimeCounter
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(
|
|
description='MMDeploy test (and eval) a backend.')
|
|
parser.add_argument('deploy_cfg', help='Deploy config path')
|
|
parser.add_argument('model_cfg', help='Model config path')
|
|
parser.add_argument(
|
|
'--model', type=str, nargs='+', help='Input model files.')
|
|
parser.add_argument('--out', help='output result file in pickle format')
|
|
parser.add_argument(
|
|
'--format-only',
|
|
action='store_true',
|
|
help='Format the output results without perform evaluation. It is'
|
|
'useful when you want to format the result to a specific format and '
|
|
'submit it to the test server')
|
|
parser.add_argument(
|
|
'--metrics',
|
|
type=str,
|
|
nargs='+',
|
|
help='evaluation metrics, which depends on the codebase and the '
|
|
'dataset, e.g., "bbox", "segm", "proposal" for COCO, and "mAP", '
|
|
'"recall" for PASCAL VOC in mmdet; "accuracy", "precision", "recall", '
|
|
'"f1_score", "support" for single label dataset, and "mAP", "CP", "CR"'
|
|
', "CF1", "OP", "OR", "OF1" for multi-label dataset in mmcls')
|
|
parser.add_argument('--show', action='store_true', help='show results')
|
|
parser.add_argument(
|
|
'--show-dir', help='directory where painted images will be saved')
|
|
parser.add_argument(
|
|
'--device', help='device used for conversion', default='cpu')
|
|
parser.add_argument(
|
|
'--cfg-options',
|
|
nargs='+',
|
|
action=DictAction,
|
|
help='override some settings in the used config, the key-value pair '
|
|
'in xxx=yyy format will be merged into config file. If the value to '
|
|
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
|
|
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
|
|
'Note that the quotation marks are necessary and that no white space '
|
|
'is allowed.')
|
|
parser.add_argument(
|
|
'--metric-options',
|
|
nargs='+',
|
|
action=DictAction,
|
|
help='custom options for evaluation, the key-value pair in xxx=yyy '
|
|
'format will be kwargs for dataset.evaluate() function')
|
|
parser.add_argument(
|
|
'--log2file',
|
|
type=str,
|
|
help='log evaluation results and speed to file',
|
|
default=None)
|
|
parser.add_argument(
|
|
'--json-file',
|
|
type=str,
|
|
help='log evaluation results to json file',
|
|
default='./results.json')
|
|
parser.add_argument(
|
|
'--speed-test', action='store_true', help='activate speed test')
|
|
parser.add_argument(
|
|
'--warmup',
|
|
type=int,
|
|
help='warmup before counting inference elapse, require setting '
|
|
'speed-test first',
|
|
default=10)
|
|
parser.add_argument(
|
|
'--log-interval',
|
|
type=int,
|
|
help='the interval between each log, require setting '
|
|
'speed-test first',
|
|
default=100)
|
|
parser.add_argument(
|
|
'--batch-size',
|
|
type=int,
|
|
default=1,
|
|
help='the batch size for test, would override `samples_per_gpu`'
|
|
'in data config.')
|
|
parser.add_argument(
|
|
'--uri',
|
|
help='Remote ipv4:port or ipv6:port for inference on edge device.')
|
|
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
|
|
raise ValueError('The output file must be a pkl file.')
|
|
deploy_cfg_path = args.deploy_cfg
|
|
model_cfg_path = args.model_cfg
|
|
|
|
# load deploy_cfg
|
|
deploy_cfg, model_cfg = load_config(deploy_cfg_path, model_cfg_path)
|
|
|
|
# merge options for model cfg
|
|
if args.cfg_options is not None:
|
|
model_cfg.merge_from_dict(args.cfg_options)
|
|
|
|
task_processor = build_task_processor(model_cfg, deploy_cfg, args.device)
|
|
|
|
# prepare the dataset loader
|
|
dataset_type = 'test'
|
|
dataset = task_processor.build_dataset(model_cfg, dataset_type)
|
|
# override samples_per_gpu that used for training
|
|
model_cfg.data['samples_per_gpu'] = args.batch_size
|
|
data_loader = task_processor.build_dataloader(
|
|
dataset,
|
|
samples_per_gpu=model_cfg.data.samples_per_gpu,
|
|
workers_per_gpu=model_cfg.data.workers_per_gpu)
|
|
|
|
# load the model of the backend
|
|
model = task_processor.init_backend_model(args.model, uri=args.uri)
|
|
|
|
is_device_cpu = (args.device == 'cpu')
|
|
device_id = None if is_device_cpu else parse_device_id(args.device)
|
|
|
|
destroy_model = model.destroy
|
|
model = MMDataParallel(model, device_ids=[device_id])
|
|
# The whole dataset test wrapped a MMDataParallel class outside the module.
|
|
# As mmcls.apis.test.py single_gpu_test defined, the MMDataParallel needs
|
|
# a 'CLASSES' attribute. So we ensure the MMDataParallel class has the same
|
|
# CLASSES attribute as the inside module.
|
|
if hasattr(model.module, 'CLASSES'):
|
|
model.CLASSES = model.module.CLASSES
|
|
if args.speed_test:
|
|
with_sync = not is_device_cpu
|
|
|
|
with TimeCounter.activate(
|
|
warmup=args.warmup,
|
|
log_interval=args.log_interval,
|
|
with_sync=with_sync,
|
|
file=args.log2file,
|
|
batch_size=model_cfg.data.samples_per_gpu):
|
|
outputs = task_processor.single_gpu_test(model, data_loader,
|
|
args.show, args.show_dir)
|
|
else:
|
|
outputs = task_processor.single_gpu_test(model, data_loader, args.show,
|
|
args.show_dir)
|
|
json_dir, _ = os.path.split(args.json_file)
|
|
if json_dir:
|
|
os.makedirs(json_dir, exist_ok=True)
|
|
task_processor.evaluate_outputs(
|
|
model_cfg,
|
|
outputs,
|
|
dataset,
|
|
args.metrics,
|
|
args.out,
|
|
args.metric_options,
|
|
args.format_only,
|
|
args.log2file,
|
|
json_file=args.json_file)
|
|
# only effective when the backend requires explicit clean-up (e.g. Ascend)
|
|
destroy_model()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|