160 lines
5.4 KiB
Python
160 lines
5.4 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import argparse
|
|
import os.path as osp
|
|
from copy import deepcopy
|
|
|
|
from mmengine import DictAction
|
|
|
|
from mmdeploy.apis import build_task_processor
|
|
from mmdeploy.utils.config_utils import load_config
|
|
from mmdeploy.utils.timer import TimeCounter
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(
|
|
description='MMDeploy test (and eval) a backend.')
|
|
parser.add_argument('deploy_cfg', help='Deploy config path')
|
|
parser.add_argument('model_cfg', help='Model config path')
|
|
parser.add_argument(
|
|
'--model', type=str, nargs='+', help='Input model files.')
|
|
parser.add_argument(
|
|
'--device', help='device used for conversion', default='cpu')
|
|
parser.add_argument(
|
|
'--work-dir',
|
|
default='./work_dir',
|
|
help='the directory to save the file containing evaluation metrics')
|
|
parser.add_argument(
|
|
'--cfg-options',
|
|
nargs='+',
|
|
action=DictAction,
|
|
help='override some settings in the used config, the key-value pair '
|
|
'in xxx=yyy format will be merged into config file. If the value to '
|
|
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
|
|
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
|
|
'Note that the quotation marks are necessary and that no white space '
|
|
'is allowed.')
|
|
parser.add_argument('--show', action='store_true', help='show results')
|
|
parser.add_argument(
|
|
'--show-dir', help='directory where painted images will be saved')
|
|
parser.add_argument(
|
|
'--interval',
|
|
type=int,
|
|
default=1,
|
|
help='visualize per interval samples.')
|
|
parser.add_argument(
|
|
'--wait-time',
|
|
type=float,
|
|
default=2,
|
|
help='display time of every window. (second)')
|
|
parser.add_argument(
|
|
'--log2file',
|
|
type=str,
|
|
help='log evaluation results and speed to file',
|
|
default=None)
|
|
parser.add_argument(
|
|
'--speed-test', action='store_true', help='activate speed test')
|
|
parser.add_argument(
|
|
'--warmup',
|
|
type=int,
|
|
help='warmup before counting inference elapse, require setting '
|
|
'speed-test first',
|
|
default=10)
|
|
parser.add_argument(
|
|
'--log-interval',
|
|
type=int,
|
|
help='the interval between each log, require setting '
|
|
'speed-test first',
|
|
default=100)
|
|
parser.add_argument(
|
|
'--batch-size',
|
|
type=int,
|
|
default=1,
|
|
help='the batch size for test, would override `samples_per_gpu`'
|
|
'in data config.')
|
|
parser.add_argument(
|
|
'--uri',
|
|
action='store_true',
|
|
default='192.168.1.1:60000',
|
|
help='Remote ipv4:port or ipv6:port for inference on edge device.')
|
|
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
deploy_cfg_path = args.deploy_cfg
|
|
model_cfg_path = args.model_cfg
|
|
|
|
# load deploy_cfg
|
|
deploy_cfg, model_cfg = load_config(deploy_cfg_path, model_cfg_path)
|
|
|
|
# work_dir is determined in this priority: CLI > segment in file > filename
|
|
if args.work_dir is not None:
|
|
# update configs according to CLI args if args.work_dir is not None
|
|
work_dir = args.work_dir
|
|
elif model_cfg.get('work_dir', None) is None:
|
|
# use config filename as default work_dir if cfg.work_dir is None
|
|
work_dir = osp.join('./work_dirs',
|
|
osp.splitext(osp.basename(args.config))[0])
|
|
|
|
# merge options for model cfg
|
|
if args.cfg_options is not None:
|
|
model_cfg.merge_from_dict(args.cfg_options)
|
|
|
|
task_processor = build_task_processor(model_cfg, deploy_cfg, args.device)
|
|
|
|
# prepare the dataset loader
|
|
test_dataloader = deepcopy(model_cfg['test_dataloader'])
|
|
if type(test_dataloader) == list:
|
|
dataset = []
|
|
for loader in test_dataloader:
|
|
ds = task_processor.build_dataset(loader['dataset'])
|
|
dataset.append(ds)
|
|
loader['dataset'] = ds
|
|
loader['batch_size'] = args.batch_size
|
|
loader = task_processor.build_dataloader(loader)
|
|
dataloader = test_dataloader
|
|
else:
|
|
test_dataloader['batch_size'] = args.batch_size
|
|
dataset = task_processor.build_dataset(test_dataloader['dataset'])
|
|
test_dataloader['dataset'] = dataset
|
|
dataloader = task_processor.build_dataloader(test_dataloader)
|
|
|
|
# load the model of the backend
|
|
model = task_processor.build_backend_model(
|
|
args.model,
|
|
data_preprocessor_updater=task_processor.update_data_preprocessor)
|
|
destroy_model = model.destroy
|
|
is_device_cpu = (args.device == 'cpu')
|
|
|
|
runner = task_processor.build_test_runner(
|
|
model,
|
|
work_dir,
|
|
log_file=args.log2file,
|
|
show=args.show,
|
|
show_dir=args.show_dir,
|
|
wait_time=args.wait_time,
|
|
interval=args.interval,
|
|
dataloader=dataloader)
|
|
|
|
if args.speed_test:
|
|
with_sync = not is_device_cpu
|
|
|
|
with TimeCounter.activate(
|
|
warmup=args.warmup,
|
|
log_interval=args.log_interval,
|
|
with_sync=with_sync,
|
|
file=args.log2file,
|
|
batch_size=args.batch_size):
|
|
runner.test()
|
|
|
|
else:
|
|
runner.test()
|
|
# only effective when the backend requires explicit clean-up (e.g. Ascend)
|
|
destroy_model()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|