mmengine/tests/test_hook/test_optimizer_hook.py

116 lines
4.3 KiB
Python
Raw Normal View History

# Copyright (c) OpenMMLab. All rights reserved.
[Refactor] Refine LoggerHook (#155) * rename global accessible and intergration get_sintance and create_instance * move ManagerMixin to utils * fix as docstring and seporate get_instance to get_instance and get_current_instance * fix lint * fix docstring, rename and move test_global_meta * rename LogBuffer to HistoryBuffer, rename MessageHub methods, MessageHub support resume * refine MMLogger timestamp, update unit test * MMLogger add logger_name arguments * Fix docstring * Add LogProcessor and some unit test * update unit test * complete LogProcessor unit test * refine LoggerHook * solve circle import * change default logger_name to mmengine * refactor eta * Fix docstring comment and unitt test * Fix with runner * fix docstring fix docstring * fix docstring * Add by_epoch attribute to LoggerHook and fix docstring * Please mypy and fix comment * remove \ in MMLogger * Fix lint * roll back pre-commit-hook * Fix hook unit test * Fix comments * remove \t in log and add docstring * Fix as comment * should not accept other arguments if corresponding instance has been created * fix logging ddp file saving * fix logging ddp file saving * move log processor to logging * move log processor to logging * remove current datalaoder * fix docstring * fix unit test * add learing rate in messagehub * Support output training/validation/testing message after iterations/epochs * fix docstring * Fix IterBasedRunner log string * Fix IterBasedRunner log string * Support parse validation loss in log processor
2022-04-24 19:23:28 +08:00
from unittest.mock import MagicMock, Mock
import torch
from torch import nn
from mmengine.hooks import OptimizerHook
class TestOptimizerHook:
def test_after_train_iter(self):
class Model(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(
in_channels=1,
out_channels=2,
kernel_size=3,
stride=1,
padding=1,
dilation=1)
self.conv2 = nn.Conv2d(
in_channels=2,
out_channels=2,
kernel_size=3,
stride=1,
padding=1,
dilation=1)
self.conv3 = nn.Conv2d(
in_channels=1,
out_channels=2,
kernel_size=3,
stride=1,
padding=1,
dilation=1)
def forward(self, x):
x1 = self.conv1(x)
x2 = self.conv2(x1)
return x1, x2
model = Model()
x = torch.rand(1, 1, 3, 3)
[Refactor] Refine LoggerHook (#155) * rename global accessible and intergration get_sintance and create_instance * move ManagerMixin to utils * fix as docstring and seporate get_instance to get_instance and get_current_instance * fix lint * fix docstring, rename and move test_global_meta * rename LogBuffer to HistoryBuffer, rename MessageHub methods, MessageHub support resume * refine MMLogger timestamp, update unit test * MMLogger add logger_name arguments * Fix docstring * Add LogProcessor and some unit test * update unit test * complete LogProcessor unit test * refine LoggerHook * solve circle import * change default logger_name to mmengine * refactor eta * Fix docstring comment and unitt test * Fix with runner * fix docstring fix docstring * fix docstring * Add by_epoch attribute to LoggerHook and fix docstring * Please mypy and fix comment * remove \ in MMLogger * Fix lint * roll back pre-commit-hook * Fix hook unit test * Fix comments * remove \t in log and add docstring * Fix as comment * should not accept other arguments if corresponding instance has been created * fix logging ddp file saving * fix logging ddp file saving * move log processor to logging * move log processor to logging * remove current datalaoder * fix docstring * fix unit test * add learing rate in messagehub * Support output training/validation/testing message after iterations/epochs * fix docstring * Fix IterBasedRunner log string * Fix IterBasedRunner log string * Support parse validation loss in log processor
2022-04-24 19:23:28 +08:00
dummy_runner = MagicMock()
dummy_runner.optimizer.zero_grad = Mock(return_value=None)
dummy_runner.optimizer.step = Mock(return_value=None)
dummy_runner.model = model
dummy_runner.outputs = dict()
dummy_runner.outputs['num_samples'] = 0
class DummyLogger():
def __init__(self):
self.msg = ''
def log(self, msg=None, **kwargs):
self.msg += msg
dummy_runner.logger = DummyLogger()
optimizer_hook = OptimizerHook(
dict(max_norm=2), detect_anomalous_params=True)
dummy_runner.outputs['loss'] = model(x)[0].sum()
dummy_runner.outputs['loss'].backward = Mock(
wraps=dummy_runner.outputs['loss'].backward)
optimizer_hook.detect_anomalous_parameters = Mock(
wraps=optimizer_hook.detect_anomalous_parameters)
optimizer_hook.clip_grads = Mock(wraps=optimizer_hook.clip_grads)
optimizer_hook.after_train_iter(dummy_runner, 0)
# assert the parameters of conv2 and conv3 are not in the
# computational graph which is with x1.sum() as root.
assert 'conv2.weight' in dummy_runner.logger.msg
assert 'conv2.bias' in dummy_runner.logger.msg
assert 'conv3.weight' in dummy_runner.logger.msg
assert 'conv3.bias' in dummy_runner.logger.msg
assert 'conv1.weight' not in dummy_runner.logger.msg
assert 'conv1.bias' not in dummy_runner.logger.msg
dummy_runner.optimizer.step.assert_called()
dummy_runner.outputs['loss'].backward.assert_called()
optimizer_hook.clip_grads.assert_called()
optimizer_hook.detect_anomalous_parameters.assert_called()
dummy_runner.outputs['loss'] = model(x)[1].sum()
dummy_runner.logger.msg = ''
optimizer_hook.after_train_iter(dummy_runner, 0)
# assert the parameters of conv3 are not in the computational graph
assert 'conv3.weight' in dummy_runner.logger.msg
assert 'conv3.bias' in dummy_runner.logger.msg
assert 'conv2.weight' not in dummy_runner.logger.msg
assert 'conv2.bias' not in dummy_runner.logger.msg
assert 'conv1.weight' not in dummy_runner.logger.msg
assert 'conv1.bias' not in dummy_runner.logger.msg
# grad_clip is None and detect_anomalous_parameters is False
optimizer_hook = OptimizerHook(detect_anomalous_params=False)
optimizer_hook.detect_anomalous_parameters = Mock(
wraps=optimizer_hook.detect_anomalous_parameters)
optimizer_hook.clip_grads = Mock(wraps=optimizer_hook.clip_grads)
dummy_runner.outputs['loss'] = model(x)[0].sum()
dummy_runner.outputs['loss'].backward = Mock(
wraps=dummy_runner.outputs['loss'].backward)
optimizer_hook.after_train_iter(dummy_runner, 0)
dummy_runner.optimizer.step.assert_called()
dummy_runner.outputs['loss'].backward.assert_called()
optimizer_hook.clip_grads.assert_not_called()
optimizer_hook.detect_anomalous_parameters.assert_not_called()