mmengine/docs/zh_cn/examples/resume_training.md

37 lines
1.6 KiB
Markdown
Raw Normal View History

# 恢复训练
恢复训练是指从之前某次训练保存下来的状态开始继续训练,这里的状态包括模型的权重、优化器和优化器参数调整策略的状态。
## 自动恢复训练
用户可以设置 `Runner``resume` 参数开启自动恢复训练的功能。在启动训练时,设置 `Runner``resume` 等于 `True``Runner` 会从 `work_dir` 中加载最新的 checkpoint。如果 `work_dir` 中有最新的 checkpoint例如该训练在上一次训练时被中断则会从该 checkpoint 恢复训练,否则(例如上一次训练还没来得及保存 checkpoint 或者启动了新的训练任务)会重新开始训练。下面是一个开启自动恢复训练的示例
```python
runner = Runner(
model=ResNet18(),
work_dir='./work_dir',
train_dataloader=train_dataloader_cfg,
optim_wrapper=dict(optimizer=dict(type='SGD', lr=0.001, momentum=0.9)),
train_cfg=dict(by_epoch=True, max_epochs=3),
resume=True,
)
runner.train()
```
## 指定 checkpoint 路径
如果希望指定恢复训练的路径,除了设置 `resume=True`,还需要设置 `load_from` 参数。需要注意的是,如果只设置了 `load_from` 而没有设置 `resume=True`,则只会加载 checkpoint 中的权重并重新开始训练,而不是接着之前的状态继续训练。
```python
runner = Runner(
model=ResNet18(),
work_dir='./work_dir',
train_dataloader=train_dataloader_cfg,
optim_wrapper=dict(optimizer=dict(type='SGD', lr=0.001, momentum=0.9)),
train_cfg=dict(by_epoch=True, max_epochs=3),
load_from='./work_dir/epoch_2.pth',
resume=True,
)
runner.train()
```