mmengine/docs/zh_cn/common_usage/visualize_training_log.md

102 lines
3.3 KiB
Markdown
Raw Normal View History

# 可视化训练日志
MMEngine 集成了 [TensorBoard](https://www.tensorflow.org/tensorboard?hl=zh-cn)、[Weights & Biases (WandB)](https://docs.wandb.ai/)、[MLflow](https://mlflow.org/docs/latest/index.html) 和 [ClearML](https://clear.ml/docs/latest/docs) 实验管理工具,你可以很方便地跟踪和可视化损失及准确率等指标。
下面基于[15 分钟上手 MMENGINE](../get_started/15_minutes.md)中的例子介绍如何一行配置实验管理工具。
## TensorBoard
设置 `Runner` 初始化参数中的 `visualizer`,并将 `vis_backends` 设置为 `TensorboardVisBackend`
```python
runner = Runner(
model=MMResNet50(),
work_dir='./work_dir',
train_dataloader=train_dataloader,
optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1),
val_dataloader=val_dataloader,
val_cfg=dict(),
val_evaluator=dict(type=Accuracy),
visualizer=dict(type='Visualizer', vis_backends=[dict(type='TensorboardVisBackend')]),
)
runner.train()
```
## WandB
使用 WandB 前需安装依赖库 `wandb` 并登录至 wandb。
```bash
pip install wandb
wandb login
```
设置 `Runner` 初始化参数中的 `visualizer`,并将 `vis_backends` 设置为 `WandbVisBackend`
```python
runner = Runner(
model=MMResNet50(),
work_dir='./work_dir',
train_dataloader=train_dataloader,
optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1),
val_dataloader=val_dataloader,
val_cfg=dict(),
val_evaluator=dict(type=Accuracy),
visualizer=dict(type='Visualizer', vis_backends=[dict(type='WandbVisBackend')]),
)
runner.train()
```
![image](https://user-images.githubusercontent.com/58739961/217226120-0c45267c-c45f-4fce-bdd5-a99c8c393006.png)
可以点击 [WandbVisBackend API](mmengine.visualization.WandbVisBackend) 查看 `WandbVisBackend` 可配置的参数。例如 `init_kwargs`,该参数会传给 [wandb.init](https://docs.wandb.ai/ref/python/init) 方法。
```python
runner = Runner(
...
visualizer=dict(
type='Visualizer',
vis_backends=[
dict(
type='WandbVisBackend',
init_kwargs=dict(project='toy-example')
),
],
),
...
)
runner.train()
```
## MLflow (WIP)
## ClearML
使用 ClearML 前需安装依赖库 `clearml` 并参考 [Connect ClearML SDK to the Server](https://clear.ml/docs/latest/docs/getting_started/ds/ds_first_steps#connect-clearml-sdk-to-the-server) 进行配置。
```bash
pip install clearml
clearml-init
```
设置 `Runner` 初始化参数中的 `visualizer`,并将 `vis_backends` 设置为 `ClearMLVisBackend`
```python
runner = Runner(
model=MMResNet50(),
work_dir='./work_dir',
train_dataloader=train_dataloader,
optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1),
val_dataloader=val_dataloader,
val_cfg=dict(),
val_evaluator=dict(type=Accuracy),
visualizer=dict(type='Visualizer', vis_backends=[dict(type='ClearMLVisBackend')]),
)
runner.train()
```
![image](https://github.com/open-mmlab/mmengine/assets/58739961/d68e1dd2-9e82-40fb-ad81-00a647549adc)