214 lines
5.7 KiB
Markdown
Raw Normal View History

# 文件读写
`MMEngine``fileio` 模块中实现了一套统一的文件读写接口。通过 `fileio` 模块,我们可以用同一个函数来处理不同的文件格式,如 `json``yaml``pickle`,并且可以方便地拓展其它的文件格式。
`fileio` 模块也支持从多种文件存储后端读写文件包括本地磁盘、Petrel内部使用、Memcached、LMDB 和 HTTP。
## 读取和保存数据
`MMEngine` 为读取和保存数据提供了统一的 API 接口,目前支持的格式有 `json``yaml``pickle`
### 从硬盘中读写文件
```python
from mmengine import load, dump
# 从文件中读取数据
data = load('test.json')
data = load('test.yaml')
data = load('test.pkl')
# 从文件对象中读取数据
with open('test.json', 'r') as f:
data = load(f, file_format='json')
# 将数据序列化为字符串
json_str = dump(data, file_format='json')
# 将数据保存至文件 (根据文件名后缀反推文件类型)
dump(data, 'out.pkl')
# 将数据保存至文件对象
with open('test.yaml', 'w') as f:
data = dump(data, f, file_format='yaml')
```
### 从其它文件存储后端读写文件
```python
from mmengine import load, dump
# 从 s3 文件中读取数据
data = load('s3://bucket-name/test.json')
data = load('s3://bucket-name/test.yaml')
data = load('s3://bucket-name/test.pkl')
# 将数据保存至 s3 文件(根据文件名后缀反推文件类型)
dump(data, 's3://bucket-name/out.pkl')
```
拓展 API 以支持更多的文件格式是很方便的。你所需要做的是写一个继承自 `BaseFileHandler` 的文件句柄,并使用一个或者多个文件格式来注册它。
```python
from mmengine import register_handler, BaseFileHandler
# 为了注册多个文件格式,可以使用列表作为参数。
# @register_handler(['txt', 'log'])
@register_handler('txt')
class TxtHandler1(BaseFileHandler):
def load_from_fileobj(self, file):
return file.read()
def dump_to_fileobj(self, obj, file):
file.write(str(obj))
def dump_to_str(self, obj, **kwargs):
return str(obj)
```
`PickleHandler` 为例:
```python
from mmengine import BaseFileHandler
import pickle
class PickleHandler(BaseFileHandler):
def load_from_fileobj(self, file, **kwargs):
return pickle.load(file, **kwargs)
def load_from_path(self, filepath, **kwargs):
return super(PickleHandler, self).load_from_path(
filepath, mode='rb', **kwargs)
def dump_to_str(self, obj, **kwargs):
kwargs.setdefault('protocol', 2)
return pickle.dumps(obj, **kwargs)
def dump_to_fileobj(self, obj, file, **kwargs):
kwargs.setdefault('protocol', 2)
pickle.dump(obj, file, **kwargs)
def dump_to_path(self, obj, filepath, **kwargs):
super(PickleHandler, self).dump_to_path(
obj, filepath, mode='wb', **kwargs)
```
## 读取文件并返回列表或字典
例如,`a.txt` 是文本文件,一共有 5 行内容。
```
a
b
c
d
e
```
### 从硬盘读取
使用 `list_from_file``a.txt` 中读取列表:
```python
from mmengine import list_from_file
print(list_from_file('a.txt'))
# ['a', 'b', 'c', 'd', 'e']
print(list_from_file('a.txt', offset=2))
# ['c', 'd', 'e']
print(list_from_file('a.txt', max_num=2))
# ['a', 'b']
print(list_from_file('a.txt', prefix='/mnt/'))
# ['/mnt/a', '/mnt/b', '/mnt/c', '/mnt/d', '/mnt/e']
```
例如,`b.txt` 是文本文件,一共有 3 行内容。
```
1 cat
2 dog cow
3 panda
```
使用 `dict_from_file``b.txt` 中读取字典:
```python
from mmengine import dict_from_file
print(dict_from_file('b.txt'))
# {'1': 'cat', '2': ['dog', 'cow'], '3': 'panda'}
print(dict_from_file('b.txt', key_type=int))
# {1: 'cat', 2: ['dog', 'cow'], 3: 'panda'}
```
### 从其他存储后端读取
使用 `list_from_file``s3://bucket-name/a.txt` 中读取列表:
```python
from mmengine import list_from_file
print(list_from_file('s3://bucket-name/a.txt'))
# ['a', 'b', 'c', 'd', 'e']
print(list_from_file('s3://bucket-name/a.txt', offset=2))
# ['c', 'd', 'e']
print(list_from_file('s3://bucket-name/a.txt', max_num=2))
# ['a', 'b']
print(list_from_file('s3://bucket-name/a.txt', prefix='/mnt/'))
# ['/mnt/a', '/mnt/b', '/mnt/c', '/mnt/d', '/mnt/e']
```
使用 `dict_from_file``s3://bucket-name/b.txt` 中读取字典:
```python
from mmengine import dict_from_file
print(dict_from_file('s3://bucket-name/b.txt'))
# {'1': 'cat', '2': ['dog', 'cow'], '3': 'panda'}
print(dict_from_file('s3://bucket-name/b.txt', key_type=int))
# {1: 'cat', 2: ['dog', 'cow'], 3: 'panda'}
```
## 读取和保存权重文件
通常情况下,我们可以通过下面的方式从磁盘或网络远端读取权重文件:
```python
import torch
filepath1 = '/path/of/your/checkpoint1.pth'
filepath2 = 'http://path/of/your/checkpoint3.pth'
# 从本地磁盘读取权重文件
checkpoint = torch.load(filepath1)
# 保存权重文件到本地磁盘
torch.save(checkpoint, filepath1)
# 从网络远端读取权重文件
checkpoint = torch.utils.model_zoo.load_url(filepath2)
```
`MMEngine` 中,在不同存储格式中读取权重文件可以通过 `load_checkpoint``save_checkpoint` 来统一实现:
```python
from mmengine import load_checkpoint, save_checkpoint
filepath1 = '/path/of/your/checkpoint1.pth'
filepath2 = 's3://bucket-name/path/of/your/checkpoint1.pth'
filepath3 = 'http://path/of/your/checkpoint3.pth'
# 从本地磁盘读取权重文件
checkpoint = load_checkpoint(filepath1)
# 保存权重文件到本地磁盘
save_checkpoint(checkpoint, filepath1)
# 从 s3 读取权重文件
checkpoint = load_checkpoint(filepath2)
# 保存权重文件到 s3
save_checkpoint(checkpoint, filepath2)
# 从网络远端读取权重文件
checkpoint = load_checkpoint(filepath3)
```