mmengine/docs/zh_cn/common_usage/epoch_to_iter.md

343 lines
8.5 KiB
Markdown
Raw Normal View History

# 从 EpochBased 切换至 IterBased
MMEngine 支持两种训练模式,基于轮次的 EpochBased 方式和基于迭代次数的 IterBased 方式,这两种方式在下游算法库均有使用,例如 [MMDetection](https://github.com/open-mmlab/mmdetection) 默认使用 EpochBased 方式,[MMSegmentation](https://github.com/open-mmlab/mmsegmentation) 默认使用 IterBased 方式。
MMEngine 很多模块默认以 EpochBased 的模式执行,例如 `ParamScheduler`, `LoggerHook`, `CheckpointHook` 等,常见的 EpochBased 配置写法如下:
```python
param_scheduler = dict(
type='MultiStepLR',
milestones=[6, 8]
by_epoch=True # by_epoch 默认为 True这边显式的写出来只是为了方便对比
)
default_hooks = dict(
logger=dict(type='LoggerHook'),
checkpoint=dict(type='CheckpointHook', interval=2),
)
train_cfg = dict(
by_epoch=True, # by_epoch 默认为 True这边显式的写出来只是为了方便对比
max_epochs=10,
val_interval=2
)
log_processor = dict(
by_epoch=True
) # log_processor 的 by_epoch 默认为 True这边显式的写出来只是为了方便对比 实际上不需要设置
runner = Runner(
model=ResNet18(),
work_dir='./work_dir',
train_dataloader=train_dataloader_cfg,
optim_wrapper=dict(optimizer=dict(type='SGD', lr=0.001, momentum=0.9)),
param_scheduler=param_scheduler
default_hooks=default_hooks,
log_processor=log_processor,
train_cfg=train_cfg,
resume=True,
)
```
如果想按照 iter 训练模型,需要做以下改动:
1.`train_cfg` 中的 `by_epoch` 设置为 `False`,同时将 `max_iters` 设置为训练的总 iter 数,`val_iterval` 设置为验证间隔的 iter 数。
```python
train_cfg = dict(
by_epoch=False,
max_iters=10000,
val_interval=2000
)
```
2.`default_hooks` 中的 `logger``log_metric_by_epoch` 设置为 False `checkpoint``by_epoch` 设置为 `False`
```python
default_hooks = dict(
logger=dict(type='LoggerHook', log_metric_by_epoch=False),
checkpoint=dict(type='CheckpointHook', by_epoch=False, interval=2000),
)
```
3.`param_scheduler` 中的 `by_epoch` 设置为 `False`,并將 `epoch` 相关的参数换算成 `iter`
```python
param_scheduler = dict(
type='MultiStepLR',
milestones=[6000, 8000],
by_epoch=False,
)
```
除了这种方式,如果你能保证 IterBasedTraining 和 EpochBasedTraining 总 iter 数一致,直接设置 `convert_to_iter_based``True` 即可。
```python
param_scheduler = dict(
type='MultiStepLR',
milestones=[6, 8]
convert_to_iter_based=True
)
```
4.`log_processor``by_epoch` 设置为 `False`
```python
log_processor = dict(
by_epoch=False
)
```
以 [15 分钟教程训练 CIFAR10 数据集](../get_started/15_minutes.md)为例:
<table class="docutils">
<thead>
<tr>
<th>Step</th>
<th>Training by epoch</th>
<th>Training by iteration</th>
<tbody>
<tr>
<td>Build model</td>
<td colspan="2"><div>
```python
import torch.nn.functional as F
import torchvision
from mmengine.model import BaseModel
class MMResNet50(BaseModel):
def __init__(self):
super().__init__()
self.resnet = torchvision.models.resnet50()
def forward(self, imgs, labels, mode):
x = self.resnet(imgs)
if mode == 'loss':
return {'loss': F.cross_entropy(x, labels)}
elif mode == 'predict':
return x, labels
```
</td>
</div>
</tr>
<tr>
<td>Build dataloader</td>
<td colspan="2">
```python
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
norm_cfg = dict(mean=[0.491, 0.482, 0.447], std=[0.202, 0.199, 0.201])
train_dataloader = DataLoader(
batch_size=32,
shuffle=True,
dataset=torchvision.datasets.CIFAR10(
'data/cifar10',
train=True,
download=True,
transform=transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(**norm_cfg)])))
val_dataloader = DataLoader(
batch_size=32,
shuffle=False,
dataset=torchvision.datasets.CIFAR10(
'data/cifar10',
train=False,
download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(**norm_cfg)])))
```
</td>
</tr>
<tr>
<td>Prepare metric</td>
<td colspan="2">
```python
from mmengine.evaluator import BaseMetric
class Accuracy(BaseMetric):
def process(self, data_batch, data_samples):
score, gt = data_samples
# save the middle result of a batch to `self.results`
self.results.append({
'batch_size': len(gt),
'correct': (score.argmax(dim=1) == gt).sum().cpu(),
})
def compute_metrics(self, results):
total_correct = sum(item['correct'] for item in results)
total_size = sum(item['batch_size'] for item in results)
# return the dict containing the eval results
# the key is the name of the metric name
return dict(accuracy=100 * total_correct / total_size)
```
</td>
</tr>
<tr>
<td>Configure default hooks</td>
<td valign="top" class='two-column-table-wrapper' width="50%" colspan="1">
<div style="overflow-x: auto">
```python
default_hooks = dict(
logger=dict(type='LoggerHook', log_metric_by_epoch=True),
checkpoint=dict(type='CheckpointHook', interval=2, by_epoch=True),
)
```
</div>
</td>
<td valign="top" class='two-column-table-wrapper' width="50%" colspan="1">
<div style="overflow-x: auto">
```python
default_hooks = dict(
logger=dict(type='LoggerHook', log_metric_by_epoch=False),
checkpoint=dict(type='CheckpointHook', by_epoch=False, interval=2000),
)
```
</div>
</td>
</tr>
<tr>
<td>Configure parameter scheduler</td>
<td valign="top" class='two-column-table-wrapper' width="50%" colspan="1">
<div style="overflow-x: auto">
```python
param_scheduler = dict(
type='MultiStepLR',
milestones=[6, 8],
by_epoch=True,
)
```
</div>
</td>
<td valign="top" class='two-column-table-wrapper' width="50%" colspan="1">
<div style="overflow-x: auto">
```python
param_scheduler = dict(
type='MultiStepLR',
milestones=[6000, 8000],
by_epoch=False,
)
```
</div>
</td>
</tr>
<tr>
<td>Configure log_processor</td>
<td valign="top" class='two-column-table-wrapper' width="50%" colspan="1">
<div style="overflow-x: auto">
```python
# The default configuration of log_processor is used for epoch based training.
# Defining it here additionally is for building runner with the same way.
log_processor = dict(by_epoch=True)
```
</div>
</td>
<td valign="top" class='two-column-table-wrapper' width="50%" colspan="1">
<div style="overflow-x: auto">
```python
log_processor = dict(by_epoch=False)
```
</div>
</td>
</tr>
<tr>
<td>Configure train_cfg</td>
<td valign="top" class='two-column-table-wrapper' width="50%" colspan="1">
<div style="overflow-x: auto">
```python
train_cfg = dict(
by_epoch=True,
max_epochs=10,
val_interval=2
)
```
</div>
</td>
<td valign="top" class='two-column-table-wrapper' width="50%" colspan="1">
<div style="overflow-x: auto">
```python
train_cfg = dict(
by_epoch=False,
max_iters=10000,
val_interval=2000
)
```
</div>
</td>
</tr>
<tr>
<td>Build Runner</td>
<td colspan="2">
```python
from torch.optim import SGD
from mmengine.runner import Runner
runner = Runner(
model=MMResNet50(),
work_dir='./work_dir',
train_dataloader=train_dataloader,
optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
train_cfg=train_cfg,
log_processor=log_processor,
default_hooks=default_hooks,
val_dataloader=val_dataloader,
val_cfg=dict(),
val_evaluator=dict(type=Accuracy),
)
runner.train()
```
</td>
</tr>
</thead>
</table>
```{note}
如果基础配置文件为 train_dataloader 配置了基于 iteration/epoch 采样的 sampler则需要在当前配置文件中将其更改为指定类型的 sampler或将其设置为 None。当 dataloader 中的 sampler 为 NoneMMEngine 或根据 train_cfg 中的 by_epoch 参数选择 `InfiniteSampler`False`DefaultSampler`True
```
```{note}
如果基础配置文件在 train_cfg 中指定了 type那么必须在当前配置文件中将 type 覆盖为IterBasedTrainLoop 或 EpochBasedTrainLoop而不能简单的指定 by_epoch 参数。
```