[Docs] Add a image for neptune (#1312)

This commit is contained in:
Zaida Zhou 2023-08-18 10:48:55 +08:00 committed by GitHub
parent 43e308caaf
commit 03ad86cfd2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 18 additions and 11 deletions

View File

@ -6,7 +6,7 @@ Below, we'll show you how to configure an experiment management tool in just one
## TensorBoard
Configure the `visualizer` in the initialization parameters of the Runner, and set `vis_backends` to `TensorboardVisBackend`.
Configure the `visualizer` in the initialization parameters of the Runner, and set `vis_backends` to [TensorboardVisBackend](mmengine.visualization.TensorboardVisBackend).
```python
runner = Runner(
@ -32,7 +32,7 @@ pip install wandb
wandb login
```
Configure the `visualizer` in the initialization parameters of the Runner, and set `vis_backends` to `WandbVisBackend`.
Configure the `visualizer` in the initialization parameters of the Runner, and set `vis_backends` to [WandbVisBackend](mmengine.visualization.WandbVisBackend).
```python
runner = Runner(
@ -81,7 +81,7 @@ pip install clearml
clearml-init
```
Configure the `visualizer` in the initialization parameters of the Runner, and set `vis_backends` to `ClearMLVisBackend`.
Configure the `visualizer` in the initialization parameters of the Runner, and set `vis_backends` to [ClearMLVisBackend](mmengine.visualization.ClearMLVisBackend).
```python
runner = Runner(
@ -108,7 +108,7 @@ Before using Neptune, you need to install `neptune` dependency library and refer
pip install neptune
```
Configure the `Runner` in the initialization parameters of the Runner, and set `vis_backends` to `NeptuneVisBackend`.
Configure the `Runner` in the initialization parameters of the Runner, and set `vis_backends` to [NeptuneVisBackend](mmengine.visualization.NeptuneVisBackend).
```python
runner = Runner(
@ -125,6 +125,8 @@ runner = Runner(
runner.train()
```
![image](https://github.com/open-mmlab/mmengine/assets/58739961/9122e2ac-cc4f-43b2-bad3-ae33faa64043)
Please note: If the `project` and `api_token` are not specified, neptune will be set to offline mode and the generated files will be saved to the local `.neptune` file.
It is recommended to specify the `project` and `api_token` during initialization as shown below.

View File

@ -1,12 +1,12 @@
# 可视化训练日志
MMEngine 集成了 [TensorBoard](https://www.tensorflow.org/tensorboard?hl=zh-cn)、[Weights & Biases (WandB)](https://docs.wandb.ai/)、[MLflow](https://mlflow.org/docs/latest/index.html) 、 [ClearML](https://clear.ml/docs/latest/docs) 和 [Neptune](https://docs.neptune.ai/)实验管理工具,你可以很方便地跟踪和可视化损失及准确率等指标。
MMEngine 集成了 [TensorBoard](https://www.tensorflow.org/tensorboard?hl=zh-cn)、[Weights & Biases (WandB)](https://docs.wandb.ai/)、[MLflow](https://mlflow.org/docs/latest/index.html) 、[ClearML](https://clear.ml/docs/latest/docs) 和 [Neptune](https://docs.neptune.ai/) 实验管理工具,你可以很方便地跟踪和可视化损失及准确率等指标。
下面基于[15 分钟上手 MMENGINE](../get_started/15_minutes.md)中的例子介绍如何一行配置实验管理工具。
## TensorBoard
设置 `Runner` 初始化参数中的 `visualizer`,并将 `vis_backends` 设置为 `TensorboardVisBackend`
设置 `Runner` 初始化参数中的 `visualizer`,并将 `vis_backends` 设置为 [TensorboardVisBackend](mmengine.visualization.TensorboardVisBackend)
```python
runner = Runner(
@ -32,7 +32,7 @@ pip install wandb
wandb login
```
设置 `Runner` 初始化参数中的 `visualizer`,并将 `vis_backends` 设置为 `WandbVisBackend`
设置 `Runner` 初始化参数中的 `visualizer`,并将 `vis_backends` 设置为 [WandbVisBackend](mmengine.visualization.WandbVisBackend)
```python
runner = Runner(
@ -81,7 +81,7 @@ pip install clearml
clearml-init
```
设置 `Runner` 初始化参数中的 `visualizer`,并将 `vis_backends` 设置为 `ClearMLVisBackend`
设置 `Runner` 初始化参数中的 `visualizer`,并将 `vis_backends` 设置为 [ClearMLVisBackend](mmengine.visualization.ClearMLVisBackend)
```python
runner = Runner(
@ -108,7 +108,7 @@ runner.train()
pip install neptune
```
设置 `Runner` 初始化参数中的 `visualizer`,并将 `vis_backends` 设置为 `NeptuneVisBackend`
设置 `Runner` 初始化参数中的 `visualizer`,并将 `vis_backends` 设置为 [NeptuneVisBackend](mmengine.visualization.NeptuneVisBackend)
```python
runner = Runner(
@ -125,7 +125,9 @@ runner = Runner(
runner.train()
```
请注意:若未提供 `project``api_token` neptune 将被设置成离线模式,产生的文件将保存到本地`.neptune`文件下。
![image](https://github.com/open-mmlab/mmengine/assets/58739961/9122e2ac-cc4f-43b2-bad3-ae33faa64043)
请注意:若未提供 `project``api_token` neptune 将被设置成离线模式,产生的文件将保存到本地 `.neptune` 文件下。
推荐在初始化时提供 `project``api_token` ,具体方法如下所示:
```python

View File

@ -1005,6 +1005,9 @@ class NeptuneVisBackend(BaseVisBackend):
>>> cfg = Config(dict(a=1, b=dict(b1=[0, 1])))
>>> neptune_vis_backend.add_config(cfg)
Note:
`New in version 0.8.5.`
Args:
save_dir (str, optional): The root directory to save the files
produced by the visualizer. NeptuneVisBackend does
@ -1016,7 +1019,7 @@ class NeptuneVisBackend(BaseVisBackend):
`namespace/project_name`. If `project` is not specified,
the value of `NEPTUNE_PROJECT` environment variable
will be taken.
- api_token (str): Users API token. If api_token is not api_token,
- api_token (str): User's API token. If api_token is not api_token,
the value of `NEPTUNE_API_TOKEN` environment variable will
be taken. Note: It is strongly recommended to use
`NEPTUNE_API_TOKEN` environment variable rather than