diff --git a/docs/en/common_usage/visualize_training_log.md b/docs/en/common_usage/visualize_training_log.md index 2526b96f..d85ba075 100644 --- a/docs/en/common_usage/visualize_training_log.md +++ b/docs/en/common_usage/visualize_training_log.md @@ -6,7 +6,7 @@ Below, we'll show you how to configure an experiment management tool in just one ## TensorBoard -Configure the `visualizer` in the initialization parameters of the Runner, and set `vis_backends` to `TensorboardVisBackend`. +Configure the `visualizer` in the initialization parameters of the Runner, and set `vis_backends` to [TensorboardVisBackend](mmengine.visualization.TensorboardVisBackend). ```python runner = Runner( @@ -32,7 +32,7 @@ pip install wandb wandb login ``` -Configure the `visualizer` in the initialization parameters of the Runner, and set `vis_backends` to `WandbVisBackend`. +Configure the `visualizer` in the initialization parameters of the Runner, and set `vis_backends` to [WandbVisBackend](mmengine.visualization.WandbVisBackend). ```python runner = Runner( @@ -81,7 +81,7 @@ pip install clearml clearml-init ``` -Configure the `visualizer` in the initialization parameters of the Runner, and set `vis_backends` to `ClearMLVisBackend`. +Configure the `visualizer` in the initialization parameters of the Runner, and set `vis_backends` to [ClearMLVisBackend](mmengine.visualization.ClearMLVisBackend). ```python runner = Runner( @@ -108,7 +108,7 @@ Before using Neptune, you need to install `neptune` dependency library and refer pip install neptune ``` -Configure the `Runner` in the initialization parameters of the Runner, and set `vis_backends` to `NeptuneVisBackend`. +Configure the `Runner` in the initialization parameters of the Runner, and set `vis_backends` to [NeptuneVisBackend](mmengine.visualization.NeptuneVisBackend). ```python runner = Runner( @@ -125,6 +125,8 @@ runner = Runner( runner.train() ``` +![image](https://github.com/open-mmlab/mmengine/assets/58739961/9122e2ac-cc4f-43b2-bad3-ae33faa64043) + Please note: If the `project` and `api_token` are not specified, neptune will be set to offline mode and the generated files will be saved to the local `.neptune` file. It is recommended to specify the `project` and `api_token` during initialization as shown below. diff --git a/docs/zh_cn/common_usage/visualize_training_log.md b/docs/zh_cn/common_usage/visualize_training_log.md index 904631a7..36830df9 100644 --- a/docs/zh_cn/common_usage/visualize_training_log.md +++ b/docs/zh_cn/common_usage/visualize_training_log.md @@ -1,12 +1,12 @@ # 可视化训练日志 -MMEngine 集成了 [TensorBoard](https://www.tensorflow.org/tensorboard?hl=zh-cn)、[Weights & Biases (WandB)](https://docs.wandb.ai/)、[MLflow](https://mlflow.org/docs/latest/index.html) 、 [ClearML](https://clear.ml/docs/latest/docs) 和 [Neptune](https://docs.neptune.ai/)实验管理工具,你可以很方便地跟踪和可视化损失及准确率等指标。 +MMEngine 集成了 [TensorBoard](https://www.tensorflow.org/tensorboard?hl=zh-cn)、[Weights & Biases (WandB)](https://docs.wandb.ai/)、[MLflow](https://mlflow.org/docs/latest/index.html) 、[ClearML](https://clear.ml/docs/latest/docs) 和 [Neptune](https://docs.neptune.ai/) 实验管理工具,你可以很方便地跟踪和可视化损失及准确率等指标。 下面基于[15 分钟上手 MMENGINE](../get_started/15_minutes.md)中的例子介绍如何一行配置实验管理工具。 ## TensorBoard -设置 `Runner` 初始化参数中的 `visualizer`,并将 `vis_backends` 设置为 `TensorboardVisBackend`。 +设置 `Runner` 初始化参数中的 `visualizer`,并将 `vis_backends` 设置为 [TensorboardVisBackend](mmengine.visualization.TensorboardVisBackend)。 ```python runner = Runner( @@ -32,7 +32,7 @@ pip install wandb wandb login ``` -设置 `Runner` 初始化参数中的 `visualizer`,并将 `vis_backends` 设置为 `WandbVisBackend`。 +设置 `Runner` 初始化参数中的 `visualizer`,并将 `vis_backends` 设置为 [WandbVisBackend](mmengine.visualization.WandbVisBackend)。 ```python runner = Runner( @@ -81,7 +81,7 @@ pip install clearml clearml-init ``` -设置 `Runner` 初始化参数中的 `visualizer`,并将 `vis_backends` 设置为 `ClearMLVisBackend`。 +设置 `Runner` 初始化参数中的 `visualizer`,并将 `vis_backends` 设置为 [ClearMLVisBackend](mmengine.visualization.ClearMLVisBackend)。 ```python runner = Runner( @@ -108,7 +108,7 @@ runner.train() pip install neptune ``` -设置 `Runner` 初始化参数中的 `visualizer`,并将 `vis_backends` 设置为 `NeptuneVisBackend`。 +设置 `Runner` 初始化参数中的 `visualizer`,并将 `vis_backends` 设置为 [NeptuneVisBackend](mmengine.visualization.NeptuneVisBackend)。 ```python runner = Runner( @@ -125,7 +125,9 @@ runner = Runner( runner.train() ``` -请注意:若未提供 `project` 和 `api_token` ,neptune 将被设置成离线模式,产生的文件将保存到本地`.neptune`文件下。 +![image](https://github.com/open-mmlab/mmengine/assets/58739961/9122e2ac-cc4f-43b2-bad3-ae33faa64043) + +请注意:若未提供 `project` 和 `api_token` ,neptune 将被设置成离线模式,产生的文件将保存到本地 `.neptune` 文件下。 推荐在初始化时提供 `project` 和 `api_token` ,具体方法如下所示: ```python diff --git a/mmengine/visualization/vis_backend.py b/mmengine/visualization/vis_backend.py index abb6ae05..48c6a907 100644 --- a/mmengine/visualization/vis_backend.py +++ b/mmengine/visualization/vis_backend.py @@ -1005,6 +1005,9 @@ class NeptuneVisBackend(BaseVisBackend): >>> cfg = Config(dict(a=1, b=dict(b1=[0, 1]))) >>> neptune_vis_backend.add_config(cfg) + Note: + `New in version 0.8.5.` + Args: save_dir (str, optional): The root directory to save the files produced by the visualizer. NeptuneVisBackend does @@ -1016,7 +1019,7 @@ class NeptuneVisBackend(BaseVisBackend): `namespace/project_name`. If `project` is not specified, the value of `NEPTUNE_PROJECT` environment variable will be taken. - - api_token (str): User’s API token. If api_token is not api_token, + - api_token (str): User's API token. If api_token is not api_token, the value of `NEPTUNE_API_TOKEN` environment variable will be taken. Note: It is strongly recommended to use `NEPTUNE_API_TOKEN` environment variable rather than