[Docs] Add gif to 15 min tutorial (#748)
* add gif * replace gif * minor refine * replace gif with higher resolutionpull/374/merge
parent
a49985f637
commit
0dd0a22e75
|
@ -238,4 +238,8 @@ System environment:
|
|||
2022/08/22 15:52:54 - mmengine - INFO - Epoch(val) [1][313/313] accuracy: 35.7000
|
||||
```
|
||||
|
||||
The corresponding implementation of PyTorch and MMEngine:
|
||||
|
||||

|
||||
|
||||
In addition to these basic components, you can also use **executor** to easily combine and configure various training techniques, such as enabling mixed-precision training and gradient accumulation (see [OptimWrapper](../tutorials/optim_wrapper.md)), configuring the learning rate decay curve (see [Metrics & Evaluator](../tutorials/evaluation.md)), and etc.
|
||||
|
|
|
@ -235,4 +235,8 @@ System environment:
|
|||
2022/08/22 15:52:54 - mmengine - INFO - Epoch(val) [1][313/313] accuracy: 35.7000
|
||||
```
|
||||
|
||||
基于 PyTorch 和基于 MMEngine 的训练流程对比如下:
|
||||
|
||||

|
||||
|
||||
除了以上基础组件,你还可以利用**执行器**轻松地组合配置各种训练技巧,如开启混合精度训练和梯度累积(见 [优化器封装(OptimWrapper)](../tutorials/optim_wrapper.md))、配置学习率衰减曲线(见 [评测指标与评测器(Metrics & Evaluator)](../tutorials/evaluation.md))等。
|
||||
|
|
Loading…
Reference in New Issue