[Feature]: Add sampler seed hook (#64)
* [Feature]: Add sampler seed hook * [Fix]: Add call with to UTpull/63/head
parent
1244e486ae
commit
2d3e91248c
|
@ -97,7 +97,7 @@ import numpy as np
|
|||
|
||||
@EVALUATORS.register_module()
|
||||
class Accuracy(BaseEvaluator):
|
||||
|
||||
|
||||
def process(self, data_samples: Dict, predictions: Dict):
|
||||
"""Process one batch of data and predictions. The processed
|
||||
Results should be stored in `self.results`, which will be used
|
||||
|
|
|
@ -276,7 +276,7 @@ class ModuleA:
|
|||
class ModuleB:
|
||||
def __init__(self):
|
||||
self.instance = GlobalAccessible.get_instance(current=True)
|
||||
|
||||
|
||||
def run(self):
|
||||
print(f'moduleB: {self.instance.instance_name} is called')
|
||||
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from .hook import Hook
|
||||
from .iter_timer_hook import IterTimerHook
|
||||
from .sampler_seed_hook import DistSamplerSeedHook
|
||||
|
||||
__all__ = ['Hook', 'IterTimerHook']
|
||||
__all__ = ['Hook', 'IterTimerHook', 'DistSamplerSeedHook']
|
||||
|
|
|
@ -0,0 +1,29 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from mmengine.registry import HOOKS
|
||||
from .hook import Hook
|
||||
|
||||
|
||||
@HOOKS.register_module()
|
||||
class DistSamplerSeedHook(Hook):
|
||||
"""Data-loading sampler for distributed training.
|
||||
|
||||
When distributed training, it is only useful in conjunction with
|
||||
:obj:`EpochBasedRunner`, while :obj:`IterBasedRunner` achieves the same
|
||||
purpose with :obj:`IterLoader`.
|
||||
"""
|
||||
|
||||
def before_epoch(self, runner: object) -> None:
|
||||
"""Set the seed for sampler and batch_sampler.
|
||||
|
||||
Args:
|
||||
runner (object): The runner of the training process.
|
||||
"""
|
||||
if hasattr(runner.data_loader.sampler, 'set_epoch'): # type: ignore
|
||||
# in case the data loader uses `SequentialSampler` in Pytorch
|
||||
runner.data_loader.sampler.set_epoch(runner.epoch) # type: ignore
|
||||
elif hasattr(
|
||||
runner.data_loader.batch_sampler.sampler, # type: ignore
|
||||
'set_epoch'):
|
||||
# batch sampler in pytorch warps the sampler as its attributes.
|
||||
runner.data_loader.batch_sampler.sampler.set_epoch( # type: ignore
|
||||
runner.epoch) # type: ignore
|
|
@ -0,0 +1,28 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from unittest.mock import Mock
|
||||
|
||||
from mmengine.hooks import DistSamplerSeedHook
|
||||
|
||||
|
||||
class TestDistSamplerSeedHook:
|
||||
|
||||
def test_before_epoch(self):
|
||||
|
||||
hook = DistSamplerSeedHook()
|
||||
# Test dataset sampler
|
||||
runner = Mock()
|
||||
runner.epoch = 1
|
||||
runner.data_loader = Mock()
|
||||
runner.data_loader.sampler = Mock()
|
||||
runner.data_loader.sampler.set_epoch = Mock()
|
||||
hook.before_epoch(runner)
|
||||
runner.data_loader.sampler.set_epoch.assert_called()
|
||||
# Test batch sampler
|
||||
runner = Mock()
|
||||
runner.data_loader = Mock()
|
||||
runner.data_loader.sampler = Mock(spec_set=True)
|
||||
runner.data_loader.batch_sampler = Mock()
|
||||
runner.data_loader.batch_sampler.sampler = Mock()
|
||||
runner.data_loader.batch_sampler.sampler.set_epoch = Mock()
|
||||
hook.before_epoch(runner)
|
||||
runner.data_loader.batch_sampler.sampler.set_epoch.assert_called()
|
Loading…
Reference in New Issue