[Docs] how to train a large model (#1228)

This commit is contained in:
Zaida Zhou 2023-07-05 18:20:07 +08:00 committed by GitHub
parent 62f9504d70
commit 33e30b7cb6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 386 additions and 2 deletions

View File

@ -62,7 +62,7 @@ v0.8.0 was released on 2023-06-30.
Highlights:
- Support training with [FSDP](https://pytorch.org/tutorials/intermediate/FSDP_adavnced_tutorial.html?highlight=fsdp) and [DeepSpeed](https://www.deepspeed.ai/). Refer to the [example](https://github.com/open-mmlab/mmengine/blob/main/examples/distributed_training_with_flexible_runner.py) for more detailed usages.
- Support training with [FSDP](https://pytorch.org/tutorials/intermediate/FSDP_adavnced_tutorial.html?highlight=fsdp) and [DeepSpeed](https://www.deepspeed.ai/). Refer to the [Training Large Models](https://mmengine.readthedocs.io/en/latest/common_usage/large_model_training.html) for more detailed usages.
- Introduce the pure Python style configuration file:

View File

@ -62,7 +62,7 @@
亮点:
- 支持使用 [FSDP](https://pytorch.org/tutorials/intermediate/FSDP_adavnced_tutorial.html?highlight=fsdp) 和 [DeepSpeed](https://www.deepspeed.ai/) 进行训练。请参考[示例](https://github.com/open-mmlab/mmengine/blob/main/examples/distributed_training_with_flexible_runner.py)以获取更详细的用法说明
- 支持使用 [FSDP](https://pytorch.org/tutorials/intermediate/FSDP_adavnced_tutorial.html?highlight=fsdp) 和 [DeepSpeed](https://www.deepspeed.ai/) 进行训练。可阅读[大模型训练](https://mmengine.readthedocs.io/zh_cn/latest/common_usage/large_model_training.html)了解用法
- 引入纯 Python 风格的配置文件:

View File

@ -25,6 +25,7 @@ Optimizer
OptimWrapperDict
DefaultOptimWrapperConstructor
ZeroRedundancyOptimizer
DeepSpeedOptimWrapper
.. autosummary::
:toctree: generated

View File

@ -0,0 +1,184 @@
# Traning Big Models
When training large models, significant resources are required. A single GPU memory is often insufficient to meet the training needs. As a result, techniques for training large models have been developed, and one typical approach is [DeepSpeed ZeRO](https://www.deepspeed.ai/tutorials/zero/#zero-overview). DeepSpeed ZeRO supports optimizer, gradient, and parameter sharding.
To provide more flexibility in supporting large model training techniques, starting from MMEngine v0.8.0, we have introduced a new runner called [FlexibleRunner](mmengine.runner.FlexibleRunner) and multiple abstract [Strategies](../api/strategy).
```{warning}
The new FlexibleRunner and Strategy are still in the experimental stage, and their interfaces may change in future versions.
```
The following example code is excerpted from [examples/distributed_training_with_flexible_runner.py](https://github.com/open-mmlab/mmengine/blob/main/examples/distributed_training_with_flexible_runner.py).
## DeepSpeed
[DeepSpeed](https://github.com/microsoft/DeepSpeed/tree/master) is an open-source distributed framework based on PyTorch, developed by Microsoft. It supports training strategies such as `ZeRO`, `3D-Parallelism`, `DeepSpeed-MoE`, and `ZeRO-Infinity`.
Starting from MMEngine v0.8.0, MMEngine supports training models using DeepSpeed.
To use DeepSpeed, you need to install it first by running the following command:
```bash
pip install deepspeed
```
After installing DeepSpeed, you need to configure the `strategy` and `optim_wrapper` parameters of FlexibleRunner as follows:
- strategy: Set `type='DeepSpeedStrategy'` and configure other parameters. See [DeepSpeedStrategy](mmengine._strategy.DeepSpeedStrategy) for more details.
- optim_wrapper: Set `type='DeepSpeedOptimWrapper'` and configure other parameters. See [DeepSpeedOptimWrapper](mmengine.optim.DeepSpeedOptimWrapper) for more details.
Here is an example configuration related to DeepSpeed:
```python
from mmengine.runner._flexible_runner import FlexibleRunner
# set `type='DeepSpeedStrategy'` and configure other parameters
strategy = dict(
type='DeepSpeedStrategy',
fp16=dict(
enabled=True,
fp16_master_weights_and_grads=False,
loss_scale=0,
loss_scale_window=500,
hysteresis=2,
min_loss_scale=1,
initial_scale_power=15,
),
inputs_to_half=[0],
zero_optimization=dict(
stage=3,
allgather_partitions=True,
reduce_scatter=True,
allgather_bucket_size=50000000,
reduce_bucket_size=50000000,
overlap_comm=True,
contiguous_gradients=True,
cpu_offload=False),
)
# set `type='DeepSpeedOptimWrapper'` and configure other parameters
optim_wrapper = dict(
type='DeepSpeedOptimWrapper',
optimizer=dict(type='AdamW', lr=1e-3))
# construct FlexibleRunner
runner = FlexibleRunner(
model=MMResNet50(),
work_dir='./work_dirs',
strategy=strategy,
train_dataloader=train_dataloader,
optim_wrapper=optim_wrapper,
param_scheduler=dict(type='LinearLR'),
train_cfg=dict(by_epoch=True, max_epochs=10, val_interval=1),
val_dataloader=val_dataloader,
val_cfg=dict(),
val_evaluator=dict(type=Accuracy))
# start training
runner.train()
```
Using two GPUs to launch distributed training:
```bash
torchrun --nproc-per-node 2 examples/distributed_training_with_flexible_runner.py --use-deepspeed
```
<details>
<summary>traning log</summary>
```
07/03 13:04:17 - mmengine - INFO - Epoch(train) [1][ 10/196] lr: 3.3333e-04 eta: 0:13:14 time: 0.4073 data_time: 0.0335 memory: 970 loss: 6.1887
07/03 13:04:19 - mmengine - INFO - Epoch(train) [1][ 20/196] lr: 3.3333e-04 eta: 0:09:39 time: 0.1904 data_time: 0.0327 memory: 970 loss: 2.5746
07/03 13:04:21 - mmengine - INFO - Epoch(train) [1][ 30/196] lr: 3.3333e-04 eta: 0:08:32 time: 0.1993 data_time: 0.0342 memory: 970 loss: 2.4180
07/03 13:04:23 - mmengine - INFO - Epoch(train) [1][ 40/196] lr: 3.3333e-04 eta: 0:08:01 time: 0.2052 data_time: 0.0368 memory: 970 loss: 2.3682
07/03 13:04:25 - mmengine - INFO - Epoch(train) [1][ 50/196] lr: 3.3333e-04 eta: 0:07:39 time: 0.2013 data_time: 0.0356 memory: 970 loss: 2.3025
07/03 13:04:27 - mmengine - INFO - Epoch(train) [1][ 60/196] lr: 3.3333e-04 eta: 0:07:25 time: 0.2025 data_time: 0.0353 memory: 970 loss: 2.2078
07/03 13:04:29 - mmengine - INFO - Epoch(train) [1][ 70/196] lr: 3.3333e-04 eta: 0:07:13 time: 0.1999 data_time: 0.0352 memory: 970 loss: 2.2045
07/03 13:04:31 - mmengine - INFO - Epoch(train) [1][ 80/196] lr: 3.3333e-04 eta: 0:07:04 time: 0.2013 data_time: 0.0350 memory: 970 loss: 2.1709
07/03 13:04:33 - mmengine - INFO - Epoch(train) [1][ 90/196] lr: 3.3333e-04 eta: 0:06:56 time: 0.1975 data_time: 0.0341 memory: 970 loss: 2.2070
07/03 13:04:35 - mmengine - INFO - Epoch(train) [1][100/196] lr: 3.3333e-04 eta: 0:06:49 time: 0.1993 data_time: 0.0347 memory: 970 loss: 2.0891
07/03 13:04:37 - mmengine - INFO - Epoch(train) [1][110/196] lr: 3.3333e-04 eta: 0:06:44 time: 0.1995 data_time: 0.0357 memory: 970 loss: 2.0700
07/03 13:04:39 - mmengine - INFO - Epoch(train) [1][120/196] lr: 3.3333e-04 eta: 0:06:38 time: 0.1966 data_time: 0.0342 memory: 970 loss: 1.9983
07/03 13:04:41 - mmengine - INFO - Epoch(train) [1][130/196] lr: 3.3333e-04 eta: 0:06:37 time: 0.2216 data_time: 0.0341 memory: 970 loss: 1.9409
07/03 13:04:43 - mmengine - INFO - Epoch(train) [1][140/196] lr: 3.3333e-04 eta: 0:06:32 time: 0.1944 data_time: 0.0336 memory: 970 loss: 1.9800
07/03 13:04:45 - mmengine - INFO - Epoch(train) [1][150/196] lr: 3.3333e-04 eta: 0:06:27 time: 0.1946 data_time: 0.0338 memory: 970 loss: 1.9356
07/03 13:04:47 - mmengine - INFO - Epoch(train) [1][160/196] lr: 3.3333e-04 eta: 0:06:22 time: 0.1937 data_time: 0.0333 memory: 970 loss: 1.8145
07/03 13:04:49 - mmengine - INFO - Epoch(train) [1][170/196] lr: 3.3333e-04 eta: 0:06:18 time: 0.1941 data_time: 0.0335 memory: 970 loss: 1.8525
07/03 13:04:51 - mmengine - INFO - Epoch(train) [1][180/196] lr: 3.3333e-04 eta: 0:06:17 time: 0.2204 data_time: 0.0341 memory: 970 loss: 1.7637
07/03 13:04:53 - mmengine - INFO - Epoch(train) [1][190/196] lr: 3.3333e-04 eta: 0:06:14 time: 0.1998 data_time: 0.0345 memory: 970 loss: 1.7523
```
</details>
## FullyShardedDataParallel (FSDP)
PyTorch has supported training with FullyShardedDataParallel (FSDP) since version v1.11. However, due to its evolving interface, we only support PyTorch versions 2.0.0 and above.
To use FSDP, you need to configure the `'strategy'` parameter of FlexibleRunner by specifying `type='FSDPStrategy'` and configuring the parameters. For detailed information about it, you can refer to [FSDPStrategy](mmengine._strategy.FSDPStrategy).
Here is an example configuration related to FSDP:
```python
from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy
size_based_auto_wrap_policy = partial(
size_based_auto_wrap_policy, min_num_params=1e7)
# set `type='FSDPStrategy'` and configure other parameters
strategy = dict(
type='FSDPStrategy',
model_wrapper=dict(auto_wrap_policy=size_based_auto_wrap_policy))
# set `type='AmpOptimWrapper'` and configure other parameters
optim_wrapper = dict(
type='AmpOptimWrapper', optimizer=dict(type='AdamW', lr=1e-3))
# construct FlexibleRunner
runner = FlexibleRunner(
model=MMResNet50(),
work_dir='./work_dirs',
strategy=strategy,
train_dataloader=train_dataloader,
optim_wrapper=optim_wrapper,
param_scheduler=dict(type='LinearLR'),
train_cfg=dict(by_epoch=True, max_epochs=10, val_interval=1),
val_dataloader=val_dataloader,
val_cfg=dict(),
val_evaluator=dict(type=Accuracy))
# start training
runner.train()
```
Using two GPUs to launch distributed training:
```bash
torchrun --nproc-per-node 2 examples/distributed_training_with_flexible_runner.py --use-fsdp
```
<details>
<summary>traning log</summary>
```
07/03 13:05:37 - mmengine - INFO - Epoch(train) [1][ 10/196] lr: 3.3333e-04 eta: 0:08:28 time: 0.2606 data_time: 0.0330 memory: 954 loss: 6.1265
07/03 13:05:38 - mmengine - INFO - Epoch(train) [1][ 20/196] lr: 3.3333e-04 eta: 0:05:18 time: 0.0673 data_time: 0.0325 memory: 954 loss: 2.5584
07/03 13:05:39 - mmengine - INFO - Epoch(train) [1][ 30/196] lr: 3.3333e-04 eta: 0:04:13 time: 0.0666 data_time: 0.0320 memory: 954 loss: 2.4816
07/03 13:05:39 - mmengine - INFO - Epoch(train) [1][ 40/196] lr: 3.3333e-04 eta: 0:03:41 time: 0.0666 data_time: 0.0321 memory: 954 loss: 2.3695
07/03 13:05:40 - mmengine - INFO - Epoch(train) [1][ 50/196] lr: 3.3333e-04 eta: 0:03:21 time: 0.0671 data_time: 0.0324 memory: 954 loss: 2.3208
07/03 13:05:41 - mmengine - INFO - Epoch(train) [1][ 60/196] lr: 3.3333e-04 eta: 0:03:08 time: 0.0667 data_time: 0.0320 memory: 954 loss: 2.2431
07/03 13:05:41 - mmengine - INFO - Epoch(train) [1][ 70/196] lr: 3.3333e-04 eta: 0:02:58 time: 0.0667 data_time: 0.0320 memory: 954 loss: 2.1873
07/03 13:05:42 - mmengine - INFO - Epoch(train) [1][ 80/196] lr: 3.3333e-04 eta: 0:02:51 time: 0.0669 data_time: 0.0320 memory: 954 loss: 2.2006
07/03 13:05:43 - mmengine - INFO - Epoch(train) [1][ 90/196] lr: 3.3333e-04 eta: 0:02:45 time: 0.0671 data_time: 0.0324 memory: 954 loss: 2.1547
07/03 13:05:43 - mmengine - INFO - Epoch(train) [1][100/196] lr: 3.3333e-04 eta: 0:02:40 time: 0.0667 data_time: 0.0321 memory: 954 loss: 2.1361
07/03 13:05:44 - mmengine - INFO - Epoch(train) [1][110/196] lr: 3.3333e-04 eta: 0:02:36 time: 0.0668 data_time: 0.0320 memory: 954 loss: 2.0405
07/03 13:05:45 - mmengine - INFO - Epoch(train) [1][120/196] lr: 3.3333e-04 eta: 0:02:32 time: 0.0669 data_time: 0.0320 memory: 954 loss: 2.0228
07/03 13:05:45 - mmengine - INFO - Epoch(train) [1][130/196] lr: 3.3333e-04 eta: 0:02:29 time: 0.0670 data_time: 0.0324 memory: 954 loss: 2.0375
07/03 13:05:46 - mmengine - INFO - Epoch(train) [1][140/196] lr: 3.3333e-04 eta: 0:02:26 time: 0.0664 data_time: 0.0320 memory: 954 loss: 1.9926
07/03 13:05:47 - mmengine - INFO - Epoch(train) [1][150/196] lr: 3.3333e-04 eta: 0:02:24 time: 0.0668 data_time: 0.0320 memory: 954 loss: 1.9820
07/03 13:05:47 - mmengine - INFO - Epoch(train) [1][160/196] lr: 3.3333e-04 eta: 0:02:22 time: 0.0674 data_time: 0.0325 memory: 954 loss: 1.9728
07/03 13:05:48 - mmengine - INFO - Epoch(train) [1][170/196] lr: 3.3333e-04 eta: 0:02:20 time: 0.0666 data_time: 0.0320 memory: 954 loss: 1.9359
07/03 13:05:49 - mmengine - INFO - Epoch(train) [1][180/196] lr: 3.3333e-04 eta: 0:02:18 time: 0.0667 data_time: 0.0321 memory: 954 loss: 1.9488
07/03 13:05:49 - mmengine - INFO - Epoch(train) [1][190/196] lr: 3.3333e-04 eta: 0:02:16 time: 0.0671 data_time: 0.0323 memory: 954 loss: 1.9023\
```
</details>

View File

@ -66,6 +66,10 @@ runner.train()
## Large Model Training
```{warning}
If you have the requirement to train large models, we recommend reading [Traning Big Models](./large_model_training.md).
```
`FSDP` is officially supported from PyTorch 1.11. The config can be written in this way:
```python

View File

@ -24,6 +24,7 @@ You can switch between Chinese and English documents in the lower-left corner of
common_usage/distributed_training.md
common_usage/speed_up_training.md
common_usage/save_gpu_memory.md
common_usage/large_model_training.md
common_usage/better_optimizers.md
common_usage/visualize_training_log.md
common_usage/set_random_seed.md

View File

@ -25,6 +25,7 @@ Optimizer
OptimWrapperDict
DefaultOptimWrapperConstructor
ZeroRedundancyOptimizer
DeepSpeedOptimWrapper
.. autosummary::
:toctree: generated

View File

@ -0,0 +1,183 @@
# 大模型训练
在训练大模型时,需要庞大的资源。单卡显存通常不能满足训练的需要,因此出现了大模型训练技术,其中典型的一种是 [DeepSpeed ZeRO](https://www.deepspeed.ai/tutorials/zero/#zero-overview)。DeepSpedd ZeRO 支持切分优化器、梯度以及参数。
为了更加灵活地支持大模型训练技术,从 MMEngine v0.8.0 开始,我们提供了新的执行器 [FlexibleRunner](mmengine.runner.FlexibleRunner) 和多个抽象策略 [Strategy](../api/strategy)。
```{warning}
新的执行器 FlexibleRunner 和 Strategy 还处于实验性阶段,在将来的版本中,它们的接口有可能会发生变化。
```
下面的示例代码摘自 [examples/distributed_training_with_flexible_runner.py](https://github.com/open-mmlab/mmengine/blob/main/examples/distributed_training_with_flexible_runner.py)。
## DeepSpeed
[DeepSpeed](https://github.com/microsoft/DeepSpeed/tree/master) 是微软开源的基于 PyTorch 的分布式框架,其支持了 `ZeRO`, `3D-Parallelism`, `DeepSpeed-MoE`, `ZeRO-Infinity` 等训练策略。
MMEngine 自 v0.8.0 开始支持使用 DeepSpeed 进行模型的训练。
使用 DeepSpeed 前需安装 deepspeed
```bash
pip install deepspeed
```
安装好 deepspeed 后,需配置 FlexibleRunner 的 strategy 和 optim_wrapper 参数:
- strategy指定 `type='DeepSpeedStrategy'` 并配置参数。参数的详细介绍可阅读 [DeepSpeedStrategy](mmengine._strategy.DeepSpeedStrategy)。
- optim_wrapper指定 `type='DeepSpeedOptimWrapper'` 并配置参数。参数的详细介绍可阅读 [DeepSpeedOptimWrapper](mmengine.optim.DeepSpeedOptimWrapper)。
下面是 DeepSpeed 相关的配置:
```python
from mmengine.runner._flexible_runner import FlexibleRunner
# 指定 DeepSpeedStrategy 并配置参数
strategy = dict(
type='DeepSpeedStrategy',
fp16=dict(
enabled=True,
fp16_master_weights_and_grads=False,
loss_scale=0,
loss_scale_window=500,
hysteresis=2,
min_loss_scale=1,
initial_scale_power=15,
),
inputs_to_half=[0],
zero_optimization=dict(
stage=3,
allgather_partitions=True,
reduce_scatter=True,
allgather_bucket_size=50000000,
reduce_bucket_size=50000000,
overlap_comm=True,
contiguous_gradients=True,
cpu_offload=False),
)
# 指定 DeepSpeedOptimWrapper 并配置参数
optim_wrapper = dict(
type='DeepSpeedOptimWrapper',
optimizer=dict(type='AdamW', lr=1e-3))
# 初始化 FlexibleRunner
runner = FlexibleRunner(
model=MMResNet50(),
work_dir='./work_dirs',
strategy=strategy,
train_dataloader=train_dataloader,
optim_wrapper=optim_wrapper,
param_scheduler=dict(type='LinearLR'),
train_cfg=dict(by_epoch=True, max_epochs=10, val_interval=1),
val_dataloader=val_dataloader,
val_cfg=dict(),
val_evaluator=dict(type=Accuracy))
# 开始训练
runner.train()
```
使用两张卡启动分布式训练:
```bash
torchrun --nproc-per-node 2 examples/distributed_training_with_flexible_runner.py --use-deepspeed
```
<details>
<summary>训练日志</summary>
```
07/03 13:04:17 - mmengine - INFO - Epoch(train) [1][ 10/196] lr: 3.3333e-04 eta: 0:13:14 time: 0.4073 data_time: 0.0335 memory: 970 loss: 6.1887
07/03 13:04:19 - mmengine - INFO - Epoch(train) [1][ 20/196] lr: 3.3333e-04 eta: 0:09:39 time: 0.1904 data_time: 0.0327 memory: 970 loss: 2.5746
07/03 13:04:21 - mmengine - INFO - Epoch(train) [1][ 30/196] lr: 3.3333e-04 eta: 0:08:32 time: 0.1993 data_time: 0.0342 memory: 970 loss: 2.4180
07/03 13:04:23 - mmengine - INFO - Epoch(train) [1][ 40/196] lr: 3.3333e-04 eta: 0:08:01 time: 0.2052 data_time: 0.0368 memory: 970 loss: 2.3682
07/03 13:04:25 - mmengine - INFO - Epoch(train) [1][ 50/196] lr: 3.3333e-04 eta: 0:07:39 time: 0.2013 data_time: 0.0356 memory: 970 loss: 2.3025
07/03 13:04:27 - mmengine - INFO - Epoch(train) [1][ 60/196] lr: 3.3333e-04 eta: 0:07:25 time: 0.2025 data_time: 0.0353 memory: 970 loss: 2.2078
07/03 13:04:29 - mmengine - INFO - Epoch(train) [1][ 70/196] lr: 3.3333e-04 eta: 0:07:13 time: 0.1999 data_time: 0.0352 memory: 970 loss: 2.2045
07/03 13:04:31 - mmengine - INFO - Epoch(train) [1][ 80/196] lr: 3.3333e-04 eta: 0:07:04 time: 0.2013 data_time: 0.0350 memory: 970 loss: 2.1709
07/03 13:04:33 - mmengine - INFO - Epoch(train) [1][ 90/196] lr: 3.3333e-04 eta: 0:06:56 time: 0.1975 data_time: 0.0341 memory: 970 loss: 2.2070
07/03 13:04:35 - mmengine - INFO - Epoch(train) [1][100/196] lr: 3.3333e-04 eta: 0:06:49 time: 0.1993 data_time: 0.0347 memory: 970 loss: 2.0891
07/03 13:04:37 - mmengine - INFO - Epoch(train) [1][110/196] lr: 3.3333e-04 eta: 0:06:44 time: 0.1995 data_time: 0.0357 memory: 970 loss: 2.0700
07/03 13:04:39 - mmengine - INFO - Epoch(train) [1][120/196] lr: 3.3333e-04 eta: 0:06:38 time: 0.1966 data_time: 0.0342 memory: 970 loss: 1.9983
07/03 13:04:41 - mmengine - INFO - Epoch(train) [1][130/196] lr: 3.3333e-04 eta: 0:06:37 time: 0.2216 data_time: 0.0341 memory: 970 loss: 1.9409
07/03 13:04:43 - mmengine - INFO - Epoch(train) [1][140/196] lr: 3.3333e-04 eta: 0:06:32 time: 0.1944 data_time: 0.0336 memory: 970 loss: 1.9800
07/03 13:04:45 - mmengine - INFO - Epoch(train) [1][150/196] lr: 3.3333e-04 eta: 0:06:27 time: 0.1946 data_time: 0.0338 memory: 970 loss: 1.9356
07/03 13:04:47 - mmengine - INFO - Epoch(train) [1][160/196] lr: 3.3333e-04 eta: 0:06:22 time: 0.1937 data_time: 0.0333 memory: 970 loss: 1.8145
07/03 13:04:49 - mmengine - INFO - Epoch(train) [1][170/196] lr: 3.3333e-04 eta: 0:06:18 time: 0.1941 data_time: 0.0335 memory: 970 loss: 1.8525
07/03 13:04:51 - mmengine - INFO - Epoch(train) [1][180/196] lr: 3.3333e-04 eta: 0:06:17 time: 0.2204 data_time: 0.0341 memory: 970 loss: 1.7637
07/03 13:04:53 - mmengine - INFO - Epoch(train) [1][190/196] lr: 3.3333e-04 eta: 0:06:14 time: 0.1998 data_time: 0.0345 memory: 970 loss: 1.7523
```
</details>
## FullyShardedDataParallel (FSDP)
PyTorch 从 v1.11 版本开始支持 [FullyShardedDataParallel](https://pytorch.org/docs/stable/fsdp.html) 训练,但由于其接口一直处于变动中,我们只支持 PyTorch v2.0.0 及以上的版本。
使用 FSDP 需配置 FlexibleRunner 的 strategy 参数:指定 `type='FSDPStrategy'` 并配置参数。参数的详细介绍可阅读 [FSDPStrategy](mmengine._strategy.FSDPStrategy)。
下面是 FSDP 相关的配置:
```python
from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy
size_based_auto_wrap_policy = partial(
size_based_auto_wrap_policy, min_num_params=1e7)
# 指定 FSDPStrategy 并配置参数
strategy = dict(
type='FSDPStrategy',
model_wrapper=dict(auto_wrap_policy=size_based_auto_wrap_policy))
# 指定 AmpOptimWrapper 并配置参数
optim_wrapper = dict(
type='AmpOptimWrapper', optimizer=dict(type='AdamW', lr=1e-3))
# 初始化 FlexibleRunner
runner = FlexibleRunner(
model=MMResNet50(),
work_dir='./work_dirs',
strategy=strategy,
train_dataloader=train_dataloader,
optim_wrapper=optim_wrapper,
param_scheduler=dict(type='LinearLR'),
train_cfg=dict(by_epoch=True, max_epochs=10, val_interval=1),
val_dataloader=val_dataloader,
val_cfg=dict(),
val_evaluator=dict(type=Accuracy))
# 开始训练
runner.train()
```
使用两张卡启动分布式训练:
```bash
torchrun --nproc-per-node 2 examples/distributed_training_with_flexible_runner.py --use-fsdp
```
<details>
<summary>训练日志</summary>
```
07/03 13:05:37 - mmengine - INFO - Epoch(train) [1][ 10/196] lr: 3.3333e-04 eta: 0:08:28 time: 0.2606 data_time: 0.0330 memory: 954 loss: 6.1265
07/03 13:05:38 - mmengine - INFO - Epoch(train) [1][ 20/196] lr: 3.3333e-04 eta: 0:05:18 time: 0.0673 data_time: 0.0325 memory: 954 loss: 2.5584
07/03 13:05:39 - mmengine - INFO - Epoch(train) [1][ 30/196] lr: 3.3333e-04 eta: 0:04:13 time: 0.0666 data_time: 0.0320 memory: 954 loss: 2.4816
07/03 13:05:39 - mmengine - INFO - Epoch(train) [1][ 40/196] lr: 3.3333e-04 eta: 0:03:41 time: 0.0666 data_time: 0.0321 memory: 954 loss: 2.3695
07/03 13:05:40 - mmengine - INFO - Epoch(train) [1][ 50/196] lr: 3.3333e-04 eta: 0:03:21 time: 0.0671 data_time: 0.0324 memory: 954 loss: 2.3208
07/03 13:05:41 - mmengine - INFO - Epoch(train) [1][ 60/196] lr: 3.3333e-04 eta: 0:03:08 time: 0.0667 data_time: 0.0320 memory: 954 loss: 2.2431
07/03 13:05:41 - mmengine - INFO - Epoch(train) [1][ 70/196] lr: 3.3333e-04 eta: 0:02:58 time: 0.0667 data_time: 0.0320 memory: 954 loss: 2.1873
07/03 13:05:42 - mmengine - INFO - Epoch(train) [1][ 80/196] lr: 3.3333e-04 eta: 0:02:51 time: 0.0669 data_time: 0.0320 memory: 954 loss: 2.2006
07/03 13:05:43 - mmengine - INFO - Epoch(train) [1][ 90/196] lr: 3.3333e-04 eta: 0:02:45 time: 0.0671 data_time: 0.0324 memory: 954 loss: 2.1547
07/03 13:05:43 - mmengine - INFO - Epoch(train) [1][100/196] lr: 3.3333e-04 eta: 0:02:40 time: 0.0667 data_time: 0.0321 memory: 954 loss: 2.1361
07/03 13:05:44 - mmengine - INFO - Epoch(train) [1][110/196] lr: 3.3333e-04 eta: 0:02:36 time: 0.0668 data_time: 0.0320 memory: 954 loss: 2.0405
07/03 13:05:45 - mmengine - INFO - Epoch(train) [1][120/196] lr: 3.3333e-04 eta: 0:02:32 time: 0.0669 data_time: 0.0320 memory: 954 loss: 2.0228
07/03 13:05:45 - mmengine - INFO - Epoch(train) [1][130/196] lr: 3.3333e-04 eta: 0:02:29 time: 0.0670 data_time: 0.0324 memory: 954 loss: 2.0375
07/03 13:05:46 - mmengine - INFO - Epoch(train) [1][140/196] lr: 3.3333e-04 eta: 0:02:26 time: 0.0664 data_time: 0.0320 memory: 954 loss: 1.9926
07/03 13:05:47 - mmengine - INFO - Epoch(train) [1][150/196] lr: 3.3333e-04 eta: 0:02:24 time: 0.0668 data_time: 0.0320 memory: 954 loss: 1.9820
07/03 13:05:47 - mmengine - INFO - Epoch(train) [1][160/196] lr: 3.3333e-04 eta: 0:02:22 time: 0.0674 data_time: 0.0325 memory: 954 loss: 1.9728
07/03 13:05:48 - mmengine - INFO - Epoch(train) [1][170/196] lr: 3.3333e-04 eta: 0:02:20 time: 0.0666 data_time: 0.0320 memory: 954 loss: 1.9359
07/03 13:05:49 - mmengine - INFO - Epoch(train) [1][180/196] lr: 3.3333e-04 eta: 0:02:18 time: 0.0667 data_time: 0.0321 memory: 954 loss: 1.9488
07/03 13:05:49 - mmengine - INFO - Epoch(train) [1][190/196] lr: 3.3333e-04 eta: 0:02:16 time: 0.0671 data_time: 0.0323 memory: 954 loss: 1.9023\
```
</details>

View File

@ -66,6 +66,10 @@ runner.train()
## 大模型训练
```{warning}
如果你有训练大模型的需求,推荐阅读[大模型训练](./large_model_training.md)。
```
PyTorch 1.11 中已经原生支持了 FSDP 技术。配置写法如下所示:
```python

View File

@ -24,6 +24,7 @@
common_usage/distributed_training.md
common_usage/speed_up_training.md
common_usage/save_gpu_memory.md
common_usage/large_model_training.md
common_usage/better_optimizers.md
common_usage/visualize_training_log.md
common_usage/set_random_seed.md

View File

@ -1,4 +1,5 @@
# Copyright (c) OpenMMLab. All rights reserved.
from mmengine.utils import is_installed
from .optimizer import (OPTIM_WRAPPER_CONSTRUCTORS, OPTIMIZERS,
AmpOptimWrapper, ApexOptimWrapper, BaseOptimWrapper,
DefaultOptimWrapperConstructor, OptimWrapper,
@ -33,3 +34,7 @@ __all__ = [
'ReduceOnPlateauMomentum', 'ReduceOnPlateauParamScheduler',
'ZeroRedundancyOptimizer', 'BaseOptimWrapper'
]
if is_installed('deepspeed'):
from .optimizer import DeepSpeedOptimWrapper # noqa:F401
__all__.append('DeepSpeedOptimWrapper')