From 4861f034a72df0ceddb313fe137e9459f4cdd76b Mon Sep 17 00:00:00 2001 From: Zaida Zhou <58739961+zhouzaida@users.noreply.github.com> Date: Tue, 21 Feb 2023 21:16:18 +0800 Subject: [PATCH] [Docs] Count FLOPs and parameters (#939) * [Docs] Count FLOPs and parameters * add the doc to index.rst * fix table in HTML * fix * fix * fix indent * refine --- docs/en/advanced_tutorials/model_analysis.md | 2 +- .../advanced_tutorials/model_analysis.md | 3 + docs/zh_cn/common_usage/model_analysis.md | 740 ++++++++++++++++++ docs/zh_cn/index.rst | 2 + 4 files changed, 746 insertions(+), 1 deletion(-) create mode 100644 docs/zh_cn/advanced_tutorials/model_analysis.md create mode 100644 docs/zh_cn/common_usage/model_analysis.md diff --git a/docs/en/advanced_tutorials/model_analysis.md b/docs/en/advanced_tutorials/model_analysis.md index 124ad3f6..77d43676 100644 --- a/docs/en/advanced_tutorials/model_analysis.md +++ b/docs/en/advanced_tutorials/model_analysis.md @@ -90,7 +90,7 @@ The return outputs is dict, which contains the following keys: +---------------------+----------------------+--------+--------------+ ``` -- `out_arch`: print related information by network layers +- `out_arch`: print related information by network layers ```bash TestNet( diff --git a/docs/zh_cn/advanced_tutorials/model_analysis.md b/docs/zh_cn/advanced_tutorials/model_analysis.md new file mode 100644 index 00000000..34a7a57d --- /dev/null +++ b/docs/zh_cn/advanced_tutorials/model_analysis.md @@ -0,0 +1,3 @@ +# 模型复杂度分析 + +翻译中,请暂时阅读英文文档 [Model Complexity Analysis](https://mmengine.readthedocs.io/en/latest/advanced_tutorials/model_analysis.html)。 diff --git a/docs/zh_cn/common_usage/model_analysis.md b/docs/zh_cn/common_usage/model_analysis.md new file mode 100644 index 00000000..5349cab9 --- /dev/null +++ b/docs/zh_cn/common_usage/model_analysis.md @@ -0,0 +1,740 @@ +# 统计模型计算量和参数量 + +1. 定义模型 + + ```python + import torch.nn.functional as F + import torchvision + from mmengine.model import BaseModel + + class MMResNet50(BaseModel): + def __init__(self): + super().__init__() + self.resnet = torchvision.models.resnet50() + + def forward(self, imgs, labels=None, mode='tensor'): + x = self.resnet(imgs) + if mode == 'loss': + return {'loss': F.cross_entropy(x, labels)} + elif mode == 'predict': + return x, labels + elif mode == 'tensor': + return x + ``` + +2. 统计计算量和参数量 + + ```python + from mmengine.analysis import get_model_complexity_info + + input_shape = (3, 224, 224) + model = MMResNet50() + analysis_results = get_model_complexity_info(model, input_shape) + ``` + +- 以表格的形式显示 + + ```python + print(analysis_results['out_table']) + ``` + +
+ 点击展开 + + ```html + +------------------------+----------------------+------------+--------------+ + | module | #parameters or shape | #flops | #activations | + +------------------------+----------------------+------------+--------------+ + | resnet | 25.557M | 4.145G | 11.115M | + | conv1 | 9.408K | 0.118G | 0.803M | + | conv1.weight | (64, 3, 7, 7) | | | + | bn1 | 0.128K | 4.014M | 0 | + | bn1.weight | (64,) | | | + | bn1.bias | (64,) | | | + | layer1 | 0.216M | 0.69G | 4.415M | + | layer1.0 | 75.008K | 0.241G | 2.007M | + | layer1.0.conv1 | 4.096K | 12.845M | 0.201M | + | layer1.0.bn1 | 0.128K | 1.004M | 0 | + | layer1.0.conv2 | 36.864K | 0.116G | 0.201M | + | layer1.0.bn2 | 0.128K | 1.004M | 0 | + | layer1.0.conv3 | 16.384K | 51.38M | 0.803M | + | layer1.0.bn3 | 0.512K | 4.014M | 0 | + | layer1.0.downsample | 16.896K | 55.394M | 0.803M | + | layer1.1 | 70.4K | 0.224G | 1.204M | + | layer1.1.conv1 | 16.384K | 51.38M | 0.201M | + | layer1.1.bn1 | 0.128K | 1.004M | 0 | + | layer1.1.conv2 | 36.864K | 0.116G | 0.201M | + | layer1.1.bn2 | 0.128K | 1.004M | 0 | + | layer1.1.conv3 | 16.384K | 51.38M | 0.803M | + | layer1.1.bn3 | 0.512K | 4.014M | 0 | + | layer1.2 | 70.4K | 0.224G | 1.204M | + | layer1.2.conv1 | 16.384K | 51.38M | 0.201M | + | layer1.2.bn1 | 0.128K | 1.004M | 0 | + | layer1.2.conv2 | 36.864K | 0.116G | 0.201M | + | layer1.2.bn2 | 0.128K | 1.004M | 0 | + | layer1.2.conv3 | 16.384K | 51.38M | 0.803M | + | layer1.2.bn3 | 0.512K | 4.014M | 0 | + | layer2 | 1.22M | 1.043G | 3.111M | + | layer2.0 | 0.379M | 0.379G | 1.305M | + | layer2.0.conv1 | 32.768K | 0.103G | 0.401M | + | layer2.0.bn1 | 0.256K | 2.007M | 0 | + | layer2.0.conv2 | 0.147M | 0.116G | 0.1M | + | layer2.0.bn2 | 0.256K | 0.502M | 0 | + | layer2.0.conv3 | 65.536K | 51.38M | 0.401M | + | layer2.0.bn3 | 1.024K | 2.007M | 0 | + | layer2.0.downsample | 0.132M | 0.105G | 0.401M | + | layer2.1 | 0.28M | 0.221G | 0.602M | + | layer2.1.conv1 | 65.536K | 51.38M | 0.1M | + | layer2.1.bn1 | 0.256K | 0.502M | 0 | + | layer2.1.conv2 | 0.147M | 0.116G | 0.1M | + | layer2.1.bn2 | 0.256K | 0.502M | 0 | + | layer2.1.conv3 | 65.536K | 51.38M | 0.401M | + | layer2.1.bn3 | 1.024K | 2.007M | 0 | + | layer2.2 | 0.28M | 0.221G | 0.602M | + | layer2.2.conv1 | 65.536K | 51.38M | 0.1M | + | layer2.2.bn1 | 0.256K | 0.502M | 0 | + | layer2.2.conv2 | 0.147M | 0.116G | 0.1M | + | layer2.2.bn2 | 0.256K | 0.502M | 0 | + | layer2.2.conv3 | 65.536K | 51.38M | 0.401M | + | layer2.2.bn3 | 1.024K | 2.007M | 0 | + | layer2.3 | 0.28M | 0.221G | 0.602M | + | layer2.3.conv1 | 65.536K | 51.38M | 0.1M | + | layer2.3.bn1 | 0.256K | 0.502M | 0 | + | layer2.3.conv2 | 0.147M | 0.116G | 0.1M | + | layer2.3.bn2 | 0.256K | 0.502M | 0 | + | layer2.3.conv3 | 65.536K | 51.38M | 0.401M | + | layer2.3.bn3 | 1.024K | 2.007M | 0 | + | layer3 | 7.098M | 1.475G | 2.158M | + | layer3.0 | 1.512M | 0.376G | 0.652M | + | layer3.0.conv1 | 0.131M | 0.103G | 0.201M | + | layer3.0.bn1 | 0.512K | 1.004M | 0 | + | layer3.0.conv2 | 0.59M | 0.116G | 50.176K | + | layer3.0.bn2 | 0.512K | 0.251M | 0 | + | layer3.0.conv3 | 0.262M | 51.38M | 0.201M | + | layer3.0.bn3 | 2.048K | 1.004M | 0 | + | layer3.0.downsample | 0.526M | 0.104G | 0.201M | + | layer3.1 | 1.117M | 0.22G | 0.301M | + | layer3.1.conv1 | 0.262M | 51.38M | 50.176K | + | layer3.1.bn1 | 0.512K | 0.251M | 0 | + | layer3.1.conv2 | 0.59M | 0.116G | 50.176K | + | layer3.1.bn2 | 0.512K | 0.251M | 0 | + | layer3.1.conv3 | 0.262M | 51.38M | 0.201M | + | layer3.1.bn3 | 2.048K | 1.004M | 0 | + | layer3.2 | 1.117M | 0.22G | 0.301M | + | layer3.2.conv1 | 0.262M | 51.38M | 50.176K | + | layer3.2.bn1 | 0.512K | 0.251M | 0 | + | layer3.2.conv2 | 0.59M | 0.116G | 50.176K | + | layer3.2.bn2 | 0.512K | 0.251M | 0 | + | layer3.2.conv3 | 0.262M | 51.38M | 0.201M | + | layer3.2.bn3 | 2.048K | 1.004M | 0 | + | layer3.3 | 1.117M | 0.22G | 0.301M | + | layer3.3.conv1 | 0.262M | 51.38M | 50.176K | + | layer3.3.bn1 | 0.512K | 0.251M | 0 | + | layer3.3.conv2 | 0.59M | 0.116G | 50.176K | + | layer3.3.bn2 | 0.512K | 0.251M | 0 | + | layer3.3.conv3 | 0.262M | 51.38M | 0.201M | + | layer3.3.bn3 | 2.048K | 1.004M | 0 | + | layer3.4 | 1.117M | 0.22G | 0.301M | + | layer3.4.conv1 | 0.262M | 51.38M | 50.176K | + | layer3.4.bn1 | 0.512K | 0.251M | 0 | + | layer3.4.conv2 | 0.59M | 0.116G | 50.176K | + | layer3.4.bn2 | 0.512K | 0.251M | 0 | + | layer3.4.conv3 | 0.262M | 51.38M | 0.201M | + | layer3.4.bn3 | 2.048K | 1.004M | 0 | + | layer3.5 | 1.117M | 0.22G | 0.301M | + | layer3.5.conv1 | 0.262M | 51.38M | 50.176K | + | layer3.5.bn1 | 0.512K | 0.251M | 0 | + | layer3.5.conv2 | 0.59M | 0.116G | 50.176K | + | layer3.5.bn2 | 0.512K | 0.251M | 0 | + | layer3.5.conv3 | 0.262M | 51.38M | 0.201M | + | layer3.5.bn3 | 2.048K | 1.004M | 0 | + | layer4 | 14.965M | 0.812G | 0.627M | + | layer4.0 | 6.04M | 0.374G | 0.326M | + | layer4.0.conv1 | 0.524M | 0.103G | 0.1M | + | layer4.0.bn1 | 1.024K | 0.502M | 0 | + | layer4.0.conv2 | 2.359M | 0.116G | 25.088K | + | layer4.0.bn2 | 1.024K | 0.125M | 0 | + | layer4.0.conv3 | 1.049M | 51.38M | 0.1M | + | layer4.0.bn3 | 4.096K | 0.502M | 0 | + | layer4.0.downsample | 2.101M | 0.103G | 0.1M | + | layer4.1 | 4.463M | 0.219G | 0.151M | + | layer4.1.conv1 | 1.049M | 51.38M | 25.088K | + | layer4.1.bn1 | 1.024K | 0.125M | 0 | + | layer4.1.conv2 | 2.359M | 0.116G | 25.088K | + | layer4.1.bn2 | 1.024K | 0.125M | 0 | + | layer4.1.conv3 | 1.049M | 51.38M | 0.1M | + | layer4.1.bn3 | 4.096K | 0.502M | 0 | + | layer4.2 | 4.463M | 0.219G | 0.151M | + | layer4.2.conv1 | 1.049M | 51.38M | 25.088K | + | layer4.2.bn1 | 1.024K | 0.125M | 0 | + | layer4.2.conv2 | 2.359M | 0.116G | 25.088K | + | layer4.2.bn2 | 1.024K | 0.125M | 0 | + | layer4.2.conv3 | 1.049M | 51.38M | 0.1M | + | layer4.2.bn3 | 4.096K | 0.502M | 0 | + | fc | 2.049M | 2.048M | 1K | + | fc.weight | (1000, 2048) | | | + | fc.bias | (1000,) | | | + | avgpool | | 0.1M | 0 | + +------------------------+----------------------+------------+--------------+ + ``` + +
+ +- 以模型结构的形式显示 + + ```python + print(analysis_results['out_arch']) + ``` + +
+ 点击展开 + + ```python + MMResNet50( + #params: 25.56M, #flops: 4.14G, #acts: 11.11M + (data_preprocessor): BaseDataPreprocessor(#params: 0, #flops: N/A, #acts: N/A) + (resnet): ResNet( + #params: 25.56M, #flops: 4.14G, #acts: 11.11M + (conv1): Conv2d( + 3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False + #params: 9.41K, #flops: 0.12G, #acts: 0.8M + ) + (bn1): BatchNorm2d( + 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 0.13K, #flops: 4.01M, #acts: 0 + ) + (relu): ReLU(inplace=True) + (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False) + (layer1): Sequential( + #params: 0.22M, #flops: 0.69G, #acts: 4.42M + (0): Bottleneck( + #params: 75.01K, #flops: 0.24G, #acts: 2.01M + (conv1): Conv2d( + 64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False + #params: 4.1K, #flops: 12.85M, #acts: 0.2M + ) + (bn1): BatchNorm2d( + 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 0.13K, #flops: 1M, #acts: 0 + ) + (conv2): Conv2d( + 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False + #params: 36.86K, #flops: 0.12G, #acts: 0.2M + ) + (bn2): BatchNorm2d( + 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 0.13K, #flops: 1M, #acts: 0 + ) + (conv3): Conv2d( + 64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False + #params: 16.38K, #flops: 51.38M, #acts: 0.8M + ) + (bn3): BatchNorm2d( + 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 0.51K, #flops: 4.01M, #acts: 0 + ) + (relu): ReLU(inplace=True) + (downsample): Sequential( + #params: 16.9K, #flops: 55.39M, #acts: 0.8M + (0): Conv2d( + 64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False + #params: 16.38K, #flops: 51.38M, #acts: 0.8M + ) + (1): BatchNorm2d( + 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 0.51K, #flops: 4.01M, #acts: 0 + ) + ) + ) + (1): Bottleneck( + #params: 70.4K, #flops: 0.22G, #acts: 1.2M + (conv1): Conv2d( + 256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False + #params: 16.38K, #flops: 51.38M, #acts: 0.2M + ) + (bn1): BatchNorm2d( + 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 0.13K, #flops: 1M, #acts: 0 + ) + (conv2): Conv2d( + 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False + #params: 36.86K, #flops: 0.12G, #acts: 0.2M + ) + (bn2): BatchNorm2d( + 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 0.13K, #flops: 1M, #acts: 0 + ) + (conv3): Conv2d( + 64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False + #params: 16.38K, #flops: 51.38M, #acts: 0.8M + ) + (bn3): BatchNorm2d( + 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 0.51K, #flops: 4.01M, #acts: 0 + ) + (relu): ReLU(inplace=True) + ) + (2): Bottleneck( + #params: 70.4K, #flops: 0.22G, #acts: 1.2M + (conv1): Conv2d( + 256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False + #params: 16.38K, #flops: 51.38M, #acts: 0.2M + ) + (bn1): BatchNorm2d( + 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 0.13K, #flops: 1M, #acts: 0 + ) + (conv2): Conv2d( + 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False + #params: 36.86K, #flops: 0.12G, #acts: 0.2M + ) + (bn2): BatchNorm2d( + 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 0.13K, #flops: 1M, #acts: 0 + ) + (conv3): Conv2d( + 64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False + #params: 16.38K, #flops: 51.38M, #acts: 0.8M + ) + (bn3): BatchNorm2d( + 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 0.51K, #flops: 4.01M, #acts: 0 + ) + (relu): ReLU(inplace=True) + ) + ) + (layer2): Sequential( + #params: 1.22M, #flops: 1.04G, #acts: 3.11M + (0): Bottleneck( + #params: 0.38M, #flops: 0.38G, #acts: 1.3M + (conv1): Conv2d( + 256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False + #params: 32.77K, #flops: 0.1G, #acts: 0.4M + ) + (bn1): BatchNorm2d( + 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 0.26K, #flops: 2.01M, #acts: 0 + ) + (conv2): Conv2d( + 128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False + #params: 0.15M, #flops: 0.12G, #acts: 0.1M + ) + (bn2): BatchNorm2d( + 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 0.26K, #flops: 0.5M, #acts: 0 + ) + (conv3): Conv2d( + 128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False + #params: 65.54K, #flops: 51.38M, #acts: 0.4M + ) + (bn3): BatchNorm2d( + 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 1.02K, #flops: 2.01M, #acts: 0 + ) + (relu): ReLU(inplace=True) + (downsample): Sequential( + #params: 0.13M, #flops: 0.1G, #acts: 0.4M + (0): Conv2d( + 256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False + #params: 0.13M, #flops: 0.1G, #acts: 0.4M + ) + (1): BatchNorm2d( + 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 1.02K, #flops: 2.01M, #acts: 0 + ) + ) + ) + (1): Bottleneck( + #params: 0.28M, #flops: 0.22G, #acts: 0.6M + (conv1): Conv2d( + 512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False + #params: 65.54K, #flops: 51.38M, #acts: 0.1M + ) + (bn1): BatchNorm2d( + 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 0.26K, #flops: 0.5M, #acts: 0 + ) + (conv2): Conv2d( + 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False + #params: 0.15M, #flops: 0.12G, #acts: 0.1M + ) + (bn2): BatchNorm2d( + 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 0.26K, #flops: 0.5M, #acts: 0 + ) + (conv3): Conv2d( + 128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False + #params: 65.54K, #flops: 51.38M, #acts: 0.4M + ) + (bn3): BatchNorm2d( + 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 1.02K, #flops: 2.01M, #acts: 0 + ) + (relu): ReLU(inplace=True) + ) + (2): Bottleneck( + #params: 0.28M, #flops: 0.22G, #acts: 0.6M + (conv1): Conv2d( + 512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False + #params: 65.54K, #flops: 51.38M, #acts: 0.1M + ) + (bn1): BatchNorm2d( + 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 0.26K, #flops: 0.5M, #acts: 0 + ) + (conv2): Conv2d( + 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False + #params: 0.15M, #flops: 0.12G, #acts: 0.1M + ) + (bn2): BatchNorm2d( + 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 0.26K, #flops: 0.5M, #acts: 0 + ) + (conv3): Conv2d( + 128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False + #params: 65.54K, #flops: 51.38M, #acts: 0.4M + ) + (bn3): BatchNorm2d( + 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 1.02K, #flops: 2.01M, #acts: 0 + ) + (relu): ReLU(inplace=True) + ) + (3): Bottleneck( + #params: 0.28M, #flops: 0.22G, #acts: 0.6M + (conv1): Conv2d( + 512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False + #params: 65.54K, #flops: 51.38M, #acts: 0.1M + ) + (bn1): BatchNorm2d( + 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 0.26K, #flops: 0.5M, #acts: 0 + ) + (conv2): Conv2d( + 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False + #params: 0.15M, #flops: 0.12G, #acts: 0.1M + ) + (bn2): BatchNorm2d( + 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 0.26K, #flops: 0.5M, #acts: 0 + ) + (conv3): Conv2d( + 128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False + #params: 65.54K, #flops: 51.38M, #acts: 0.4M + ) + (bn3): BatchNorm2d( + 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 1.02K, #flops: 2.01M, #acts: 0 + ) + (relu): ReLU(inplace=True) + ) + ) + (layer3): Sequential( + #params: 7.1M, #flops: 1.48G, #acts: 2.16M + (0): Bottleneck( + #params: 1.51M, #flops: 0.38G, #acts: 0.65M + (conv1): Conv2d( + 512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False + #params: 0.13M, #flops: 0.1G, #acts: 0.2M + ) + (bn1): BatchNorm2d( + 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 0.51K, #flops: 1M, #acts: 0 + ) + (conv2): Conv2d( + 256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False + #params: 0.59M, #flops: 0.12G, #acts: 50.18K + ) + (bn2): BatchNorm2d( + 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 0.51K, #flops: 0.25M, #acts: 0 + ) + (conv3): Conv2d( + 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False + #params: 0.26M, #flops: 51.38M, #acts: 0.2M + ) + (bn3): BatchNorm2d( + 1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 2.05K, #flops: 1M, #acts: 0 + ) + (relu): ReLU(inplace=True) + (downsample): Sequential( + #params: 0.53M, #flops: 0.1G, #acts: 0.2M + (0): Conv2d( + 512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False + #params: 0.52M, #flops: 0.1G, #acts: 0.2M + ) + (1): BatchNorm2d( + 1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 2.05K, #flops: 1M, #acts: 0 + ) + ) + ) + (1): Bottleneck( + #params: 1.12M, #flops: 0.22G, #acts: 0.3M + (conv1): Conv2d( + 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False + #params: 0.26M, #flops: 51.38M, #acts: 50.18K + ) + (bn1): BatchNorm2d( + 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 0.51K, #flops: 0.25M, #acts: 0 + ) + (conv2): Conv2d( + 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False + #params: 0.59M, #flops: 0.12G, #acts: 50.18K + ) + (bn2): BatchNorm2d( + 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 0.51K, #flops: 0.25M, #acts: 0 + ) + (conv3): Conv2d( + 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False + #params: 0.26M, #flops: 51.38M, #acts: 0.2M + ) + (bn3): BatchNorm2d( + 1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 2.05K, #flops: 1M, #acts: 0 + ) + (relu): ReLU(inplace=True) + ) + (2): Bottleneck( + #params: 1.12M, #flops: 0.22G, #acts: 0.3M + (conv1): Conv2d( + 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False + #params: 0.26M, #flops: 51.38M, #acts: 50.18K + ) + (bn1): BatchNorm2d( + 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 0.51K, #flops: 0.25M, #acts: 0 + ) + (conv2): Conv2d( + 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False + #params: 0.59M, #flops: 0.12G, #acts: 50.18K + ) + (bn2): BatchNorm2d( + 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 0.51K, #flops: 0.25M, #acts: 0 + ) + (conv3): Conv2d( + 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False + #params: 0.26M, #flops: 51.38M, #acts: 0.2M + ) + (bn3): BatchNorm2d( + 1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 2.05K, #flops: 1M, #acts: 0 + ) + (relu): ReLU(inplace=True) + ) + (3): Bottleneck( + #params: 1.12M, #flops: 0.22G, #acts: 0.3M + (conv1): Conv2d( + 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False + #params: 0.26M, #flops: 51.38M, #acts: 50.18K + ) + (bn1): BatchNorm2d( + 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 0.51K, #flops: 0.25M, #acts: 0 + ) + (conv2): Conv2d( + 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False + #params: 0.59M, #flops: 0.12G, #acts: 50.18K + ) + (bn2): BatchNorm2d( + 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 0.51K, #flops: 0.25M, #acts: 0 + ) + (conv3): Conv2d( + 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False + #params: 0.26M, #flops: 51.38M, #acts: 0.2M + ) + (bn3): BatchNorm2d( + 1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 2.05K, #flops: 1M, #acts: 0 + ) + (relu): ReLU(inplace=True) + ) + (4): Bottleneck( + #params: 1.12M, #flops: 0.22G, #acts: 0.3M + (conv1): Conv2d( + 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False + #params: 0.26M, #flops: 51.38M, #acts: 50.18K + ) + (bn1): BatchNorm2d( + 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 0.51K, #flops: 0.25M, #acts: 0 + ) + (conv2): Conv2d( + 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False + #params: 0.59M, #flops: 0.12G, #acts: 50.18K + ) + (bn2): BatchNorm2d( + 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 0.51K, #flops: 0.25M, #acts: 0 + ) + (conv3): Conv2d( + 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False + #params: 0.26M, #flops: 51.38M, #acts: 0.2M + ) + (bn3): BatchNorm2d( + 1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 2.05K, #flops: 1M, #acts: 0 + ) + (relu): ReLU(inplace=True) + ) + (5): Bottleneck( + #params: 1.12M, #flops: 0.22G, #acts: 0.3M + (conv1): Conv2d( + 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False + #params: 0.26M, #flops: 51.38M, #acts: 50.18K + ) + (bn1): BatchNorm2d( + 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 0.51K, #flops: 0.25M, #acts: 0 + ) + (conv2): Conv2d( + 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False + #params: 0.59M, #flops: 0.12G, #acts: 50.18K + ) + (bn2): BatchNorm2d( + 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 0.51K, #flops: 0.25M, #acts: 0 + ) + (conv3): Conv2d( + 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False + #params: 0.26M, #flops: 51.38M, #acts: 0.2M + ) + (bn3): BatchNorm2d( + 1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 2.05K, #flops: 1M, #acts: 0 + ) + (relu): ReLU(inplace=True) + ) + ) + (layer4): Sequential( + #params: 14.96M, #flops: 0.81G, #acts: 0.63M + (0): Bottleneck( + #params: 6.04M, #flops: 0.37G, #acts: 0.33M + (conv1): Conv2d( + 1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False + #params: 0.52M, #flops: 0.1G, #acts: 0.1M + ) + (bn1): BatchNorm2d( + 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 1.02K, #flops: 0.5M, #acts: 0 + ) + (conv2): Conv2d( + 512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False + #params: 2.36M, #flops: 0.12G, #acts: 25.09K + ) + (bn2): BatchNorm2d( + 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 1.02K, #flops: 0.13M, #acts: 0 + ) + (conv3): Conv2d( + 512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False + #params: 1.05M, #flops: 51.38M, #acts: 0.1M + ) + (bn3): BatchNorm2d( + 2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 4.1K, #flops: 0.5M, #acts: 0 + ) + (relu): ReLU(inplace=True) + (downsample): Sequential( + #params: 2.1M, #flops: 0.1G, #acts: 0.1M + (0): Conv2d( + 1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False + #params: 2.1M, #flops: 0.1G, #acts: 0.1M + ) + (1): BatchNorm2d( + 2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 4.1K, #flops: 0.5M, #acts: 0 + ) + ) + ) + (1): Bottleneck( + #params: 4.46M, #flops: 0.22G, #acts: 0.15M + (conv1): Conv2d( + 2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False + #params: 1.05M, #flops: 51.38M, #acts: 25.09K + ) + (bn1): BatchNorm2d( + 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 1.02K, #flops: 0.13M, #acts: 0 + ) + (conv2): Conv2d( + 512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False + #params: 2.36M, #flops: 0.12G, #acts: 25.09K + ) + (bn2): BatchNorm2d( + 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 1.02K, #flops: 0.13M, #acts: 0 + ) + (conv3): Conv2d( + 512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False + #params: 1.05M, #flops: 51.38M, #acts: 0.1M + ) + (bn3): BatchNorm2d( + 2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 4.1K, #flops: 0.5M, #acts: 0 + ) + (relu): ReLU(inplace=True) + ) + (2): Bottleneck( + #params: 4.46M, #flops: 0.22G, #acts: 0.15M + (conv1): Conv2d( + 2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False + #params: 1.05M, #flops: 51.38M, #acts: 25.09K + ) + (bn1): BatchNorm2d( + 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 1.02K, #flops: 0.13M, #acts: 0 + ) + (conv2): Conv2d( + 512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False + #params: 2.36M, #flops: 0.12G, #acts: 25.09K + ) + (bn2): BatchNorm2d( + 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 1.02K, #flops: 0.13M, #acts: 0 + ) + (conv3): Conv2d( + 512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False + #params: 1.05M, #flops: 51.38M, #acts: 0.1M + ) + (bn3): BatchNorm2d( + 2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True + #params: 4.1K, #flops: 0.5M, #acts: 0 + ) + (relu): ReLU(inplace=True) + ) + ) + (avgpool): AdaptiveAvgPool2d( + output_size=(1, 1) + #params: 0, #flops: 0.1M, #acts: 0 + ) + (fc): Linear( + in_features=2048, out_features=1000, bias=True + #params: 2.05M, #flops: 2.05M, #acts: 1K + ) + ) + ) + ``` + +
+ +- 总的计算量 + + ```python + print("Model Flops:{}".format(analysis_results['flops_str'])) + # Model Flops:4.145G + ``` + +- 总的参数量 + + ```python + print("Model Parameters:{}".format(analysis_results['params_str'])) + # Model Parameters:25.557M + ``` + +关于模型计算量和参数量的定义以及更多用法请阅读[模型复杂度分析](../advanced_tutorials/model_analysis.md)。 diff --git a/docs/zh_cn/index.rst b/docs/zh_cn/index.rst index 95af4ce4..aacfe808 100644 --- a/docs/zh_cn/index.rst +++ b/docs/zh_cn/index.rst @@ -24,6 +24,7 @@ common_usage/speed_up_training.md common_usage/save_gpu_memory.md common_usage/set_random_seed.md + common_usage/model_analysis.md common_usage/set_interval.md common_usage/epoch_to_iter.md @@ -56,6 +57,7 @@ advanced_tutorials/manager_mixin.md advanced_tutorials/cross_library.md advanced_tutorials/test_time_augmentation.md + advanced_tutorials/model_analysis.md .. toctree:: :maxdepth: 1