mirror of
https://github.com/open-mmlab/mmengine.git
synced 2025-06-03 21:54:44 +08:00
[Docs] how to set the interval parameter (#917)
* [Docs] how to set the interval parameter * fix link * fix * fix * refine * refine * Update docs/zh_cn/common_usage/set_interval.md Co-authored-by: Qian Zhao <112053249+C1rN09@users.noreply.github.com> * Update index.rst --------- Co-authored-by: Qian Zhao <112053249+C1rN09@users.noreply.github.com>
This commit is contained in:
parent
74fcaea0ab
commit
502edec0b6
116
docs/zh_cn/common_usage/set_interval.md
Normal file
116
docs/zh_cn/common_usage/set_interval.md
Normal file
@ -0,0 +1,116 @@
|
||||
# 设置日志、权重保存、验证的频率
|
||||
|
||||
MMEngine 支持两种训练模式,基于轮次的 `EpochBased` 方式和基于迭代次数的 `IterBased` 方式,这两种方式在下游算法库均有使用,例如 [MMDetection](https://github.com/open-mmlab/mmdetection) 默认使用 EpochBased 方式,[MMSegmentation](https://github.com/open-mmlab/mmsegmentation) 默认使用 IterBased 方式。
|
||||
|
||||
在不同的训练模式下,MMEngine 间隔(interval)的语义会有区别,`EpochBased` 的间隔以 `Epoch` 为单位,`IterBased` 以 `Iteration` 为单位。
|
||||
|
||||
## 设置训练和验证的间隔
|
||||
|
||||
设置 [Runner](mmengine.runner.Runner) 初始化参数 `train_cfg` 中的 `val_interval` 值即可定制训练和验证的间隔。
|
||||
|
||||
- EpochBased
|
||||
|
||||
在 `EpochBased` 模式下,`val_interval` 的默认值为 1,表示训练一个 Epoch,验证一次。
|
||||
|
||||
```python
|
||||
runner = Runner(
|
||||
model=MMResNet50(),
|
||||
work_dir='./work_dir',
|
||||
train_dataloader=train_dataloader,
|
||||
optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
|
||||
train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1),
|
||||
val_dataloader=val_dataloader,
|
||||
val_cfg=dict(),
|
||||
val_evaluator=dict(type=Accuracy),
|
||||
)
|
||||
runner.train()
|
||||
```
|
||||
|
||||
- IterBased
|
||||
|
||||
在 `IterBased` 模式下,`val_interval` 的默认值为 1000,表示训练迭代 1000 次,验证一次。
|
||||
|
||||
```python
|
||||
runner = Runner(
|
||||
model=MMResNet50(),
|
||||
work_dir='./work_dir',
|
||||
train_dataloader=train_dataloader,
|
||||
optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
|
||||
train_cfg=dict(by_epoch=False, max_iters=10000, val_interval=2000),
|
||||
val_dataloader=val_dataloader,
|
||||
val_cfg=dict(),
|
||||
val_evaluator=dict(type=Accuracy),
|
||||
)
|
||||
runner.train()
|
||||
```
|
||||
|
||||
## 设置保存权重的间隔
|
||||
|
||||
设置 [CheckpointHook](mmengine.hooks.CheckpointHook) 的 `interval` 值即可定制保存权重的间隔。
|
||||
|
||||
- EpochBased
|
||||
|
||||
在 `EpochBased` 模式下,`interval` 的默认值为 1,表示训练一个 Epoch,保存一次权重。
|
||||
|
||||
```python
|
||||
# 将 interval 设置为 2,表示每 2 个 epoch 保存一次权重
|
||||
default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=2))
|
||||
runner = Runner(
|
||||
model=MMResNet50(),
|
||||
work_dir='./work_dir',
|
||||
train_dataloader=train_dataloader,
|
||||
optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
|
||||
train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1),
|
||||
val_dataloader=val_dataloader,
|
||||
val_cfg=dict(),
|
||||
val_evaluator=dict(type=Accuracy),
|
||||
default_hooks=default_hooks,
|
||||
)
|
||||
runner.train()
|
||||
```
|
||||
|
||||
- IterBased
|
||||
|
||||
默认以 Epoch 为单位保存权重,如果希望以 Iteration 为单位,需设置 `by_epoch=False`。
|
||||
|
||||
```python
|
||||
# 设置 by_epoch=False 以及 interval = 500,表示每 500 个 iteration 保存一次权重
|
||||
default_hooks = dict(checkpoint=dict(type='CheckpointHook', by_epoch=False, interval=500))
|
||||
runner = Runner(
|
||||
model=MMResNet50(),
|
||||
work_dir='./work_dir',
|
||||
train_dataloader=train_dataloader,
|
||||
optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
|
||||
train_cfg=dict(by_epoch=False, max_iters=10000, val_interval=1000),
|
||||
val_dataloader=val_dataloader,
|
||||
val_cfg=dict(),
|
||||
val_evaluator=dict(type=Accuracy),
|
||||
default_hooks=default_hooks,
|
||||
)
|
||||
runner.train()
|
||||
```
|
||||
|
||||
`CheckpointHook` 的更多用法可查看 [CheckpointHook 教程](../tutorials/hook.md#checkpointhook)。
|
||||
|
||||
## 设置打印日志的间隔
|
||||
|
||||
默认情况下,每迭代 10 次往终端打印 1 次日志,可以通过设置 [LoggerHook](mmengine.hooks.LoggerHook) 的 `interval` 参数进行设置。
|
||||
|
||||
```python
|
||||
# 设置每 20 次打印一次
|
||||
default_hooks = dict(logger=dict(type='LoggerHook', interval=20))
|
||||
runner = Runner(
|
||||
model=MMResNet50(),
|
||||
work_dir='./work_dir',
|
||||
train_dataloader=train_dataloader,
|
||||
optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
|
||||
train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1),
|
||||
val_dataloader=val_dataloader,
|
||||
val_cfg=dict(),
|
||||
val_evaluator=dict(type=Accuracy),
|
||||
default_hooks=default_hooks,
|
||||
)
|
||||
runner.train()
|
||||
```
|
||||
|
||||
`LoggerHook` 的更多用法可查看 [LoggerHook 教程](../tutorials/hook.md#loggerhook)。
|
@ -24,6 +24,7 @@
|
||||
common_usage/speed_up_training.md
|
||||
common_usage/save_gpu_memory.md
|
||||
common_usage/set_random_seed.md
|
||||
common_usage/set_interval.md
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 3
|
||||
|
@ -27,7 +27,7 @@ def calc_dynamic_intervals(
|
||||
|
||||
Returns:
|
||||
Tuple[List[int], List[int]]: a list of milestone and its corresponding
|
||||
intervals.
|
||||
intervals.
|
||||
"""
|
||||
if dynamic_interval_list is None:
|
||||
return [0], [start_interval]
|
||||
|
Loading…
x
Reference in New Issue
Block a user