[Feature]: Add optimizer hook (#70)

* [Feature]: Add optimizer hook

* [Fix]: Update docstring

* [Fix]: Add call with in UT
pull/71/head
Yuan Liu 2022-03-01 17:42:15 +08:00 committed by GitHub
parent ee95ce2488
commit 63a3af4f8c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 249 additions and 2 deletions

View File

@ -1,9 +1,11 @@
# Copyright (c) OpenMMLab. All rights reserved.
from .hook import Hook
from .iter_timer_hook import IterTimerHook
from .sampler_seed_hook import DistSamplerSeedHook
from .optimizer_hook import OptimizerHook
from .param_scheduler_hook import ParamSchedulerHook
from .sampler_seed_hook import DistSamplerSeedHook
__all__ = [
'Hook', 'IterTimerHook', 'DistSamplerSeedHook', 'ParamSchedulerHook'
'Hook', 'IterTimerHook', 'DistSamplerSeedHook', 'ParamSchedulerHook',
'OptimizerHook'
]

View File

@ -0,0 +1,130 @@
# Copyright (c) OpenMMLab. All rights reserved.
import logging
from typing import List, Optional, Sequence
import torch
from torch.nn.parameter import Parameter
from torch.nn.utils import clip_grad
from mmengine.data import BaseDataSample
from mmengine.registry import HOOKS
from .hook import Hook
@HOOKS.register_module()
class OptimizerHook(Hook):
"""A hook contains custom operations for the optimizer.
Args:
grad_clip (dict, optional): A config dict to control the clip_grad.
Defaults to None.
detect_anomalous_params (bool): This option is only used for
debugging which will slow down the training speed.
Detect anomalous parameters that are not included in
the computational graph with ``loss`` as the root.
There are two cases
- Parameters were not used during
forward pass.
- Parameters were not used to produce
loss.
Defaults to False.
"""
def __init__(self,
grad_clip: Optional[dict] = None,
detect_anomalous_params: bool = False) -> None:
self.grad_clip = grad_clip
self.detect_anomalous_params = detect_anomalous_params
def clip_grads(self, params: List[Parameter]) -> Optional[torch.Tensor]:
"""Clip the gradients of parameters.
Args:
params (list[Parameter]): Model's parameters.
Returns:
Optional[torch.Tensor]: Total norm of the parameters if there is
at least one param requiring gradient, else None.
"""
params = list(
filter(lambda p: p.requires_grad and p.grad is not None, params))
if len(params) > 0:
return clip_grad.clip_grad_norm_(params, **self.grad_clip)
return None
def after_train_iter(
self,
runner: object,
data_batch: Optional[Sequence[BaseDataSample]] = None,
outputs: Optional[Sequence[BaseDataSample]] = None) -> None:
"""All operations need to be finished after each training iteration.
This function will finish following 3 operations:
- Detect any anomalous parameters which are not included in the
training graph. (optional)
- Compute the gradient of model parameters.
- Clip the gradidents of each parameters. (optional)
- Update model parameters with gradients.
Args:
runner (object): The runner of the training process.
data_batch (Sequence[BaseDataSample], optional): Data from
dataloader. In order to keep this interface consistent with
other hooks, we keep ``data_batch`` here. Defaults to None.
outputs (Sequence[BaseDataSample], optional): Outputs from model.
In order to keep this interface consistent with other hooks,
we keep ``outputs`` here. Defaults to None.
"""
runner.optimizer.zero_grad() # type: ignore
if self.detect_anomalous_params:
self.detect_anomalous_parameters(
runner.outputs['loss'], # type: ignore
runner)
runner.outputs['loss'].backward() # type: ignore
if self.grad_clip is not None:
grad_norm = self.clip_grads(
runner.model.parameters()) # type: ignore
if grad_norm is not None:
# Add grad norm to the logger
runner.log_buffer.update( # type: ignore
{'grad_norm': float(grad_norm)},
runner.outputs['num_samples']) # type: ignore
runner.optimizer.step() # type: ignore
def detect_anomalous_parameters(self, loss: torch.Tensor,
runner: object) -> None:
"""Detect anomalous parameters that are not included in the graph.
Args:
loss (torch.Tensor): The loss of current iteration.
runner (object): The runner of the training process.
"""
logger = runner.logger # type: ignore
parameters_in_graph = set()
visited = set()
def traverse(grad_fn):
if grad_fn is None:
return
if grad_fn not in visited:
visited.add(grad_fn)
if hasattr(grad_fn, 'variable'):
parameters_in_graph.add(grad_fn.variable)
parents = grad_fn.next_functions
if parents is not None:
for parent in parents:
grad_fn = parent[0]
traverse(grad_fn)
traverse(loss.grad_fn)
for n, p in runner.model.named_parameters(): # type: ignore
if p not in parameters_in_graph and p.requires_grad:
logger.log(
level=logging.ERROR,
msg=f'{n} with shape {p.size()} is not '
f'in the computational graph \n')

View File

@ -0,0 +1,115 @@
# Copyright (c) OpenMMLab. All rights reserved.
from unittest.mock import Mock
import torch
from torch import nn
from mmengine.hooks import OptimizerHook
class TestOptimizerHook:
def test_after_train_iter(self):
class Model(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(
in_channels=1,
out_channels=2,
kernel_size=3,
stride=1,
padding=1,
dilation=1)
self.conv2 = nn.Conv2d(
in_channels=2,
out_channels=2,
kernel_size=3,
stride=1,
padding=1,
dilation=1)
self.conv3 = nn.Conv2d(
in_channels=1,
out_channels=2,
kernel_size=3,
stride=1,
padding=1,
dilation=1)
def forward(self, x):
x1 = self.conv1(x)
x2 = self.conv2(x1)
return x1, x2
model = Model()
x = torch.rand(1, 1, 3, 3)
dummy_runner = Mock()
dummy_runner.optimizer.zero_grad = Mock(return_value=None)
dummy_runner.optimizer.step = Mock(return_value=None)
dummy_runner.model = model
dummy_runner.outputs = dict()
dummy_runner.outputs['num_samples'] = 0
class DummyLogger():
def __init__(self):
self.msg = ''
def log(self, msg=None, **kwargs):
self.msg += msg
dummy_runner.logger = DummyLogger()
optimizer_hook = OptimizerHook(
dict(max_norm=2), detect_anomalous_params=True)
dummy_runner.outputs['loss'] = model(x)[0].sum()
dummy_runner.outputs['loss'].backward = Mock(
wraps=dummy_runner.outputs['loss'].backward)
optimizer_hook.detect_anomalous_parameters = Mock(
wraps=optimizer_hook.detect_anomalous_parameters)
optimizer_hook.clip_grads = Mock(wraps=optimizer_hook.clip_grads)
optimizer_hook.after_train_iter(dummy_runner)
# assert the parameters of conv2 and conv3 are not in the
# computational graph which is with x1.sum() as root.
assert 'conv2.weight' in dummy_runner.logger.msg
assert 'conv2.bias' in dummy_runner.logger.msg
assert 'conv3.weight' in dummy_runner.logger.msg
assert 'conv3.bias' in dummy_runner.logger.msg
assert 'conv1.weight' not in dummy_runner.logger.msg
assert 'conv1.bias' not in dummy_runner.logger.msg
dummy_runner.optimizer.step.assert_called()
dummy_runner.outputs['loss'].backward.assert_called()
optimizer_hook.clip_grads.assert_called()
optimizer_hook.detect_anomalous_parameters.assert_called()
dummy_runner.outputs['loss'] = model(x)[1].sum()
dummy_runner.logger.msg = ''
optimizer_hook.after_train_iter(dummy_runner)
# assert the parameters of conv3 are not in the computational graph
assert 'conv3.weight' in dummy_runner.logger.msg
assert 'conv3.bias' in dummy_runner.logger.msg
assert 'conv2.weight' not in dummy_runner.logger.msg
assert 'conv2.bias' not in dummy_runner.logger.msg
assert 'conv1.weight' not in dummy_runner.logger.msg
assert 'conv1.bias' not in dummy_runner.logger.msg
# grad_clip is None and detect_anomalous_parameters is False
optimizer_hook = OptimizerHook(detect_anomalous_params=False)
optimizer_hook.detect_anomalous_parameters = Mock(
wraps=optimizer_hook.detect_anomalous_parameters)
optimizer_hook.clip_grads = Mock(wraps=optimizer_hook.clip_grads)
dummy_runner.outputs['loss'] = model(x)[0].sum()
dummy_runner.outputs['loss'].backward = Mock(
wraps=dummy_runner.outputs['loss'].backward)
optimizer_hook.after_train_iter(dummy_runner)
dummy_runner.optimizer.step.assert_called()
dummy_runner.outputs['loss'].backward.assert_called()
optimizer_hook.clip_grads.assert_not_called()
optimizer_hook.detect_anomalous_parameters.assert_not_called()