[Docs] Fix docstring format and rescale the image (#802)

This commit is contained in:
Zaida Zhou 2022-12-08 14:29:27 +08:00 committed by GitHub
parent 381c5f103c
commit 65eb39bfc6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 36 additions and 32 deletions

View File

@ -57,7 +57,9 @@ data
The initialization process of the `BaseDataset` is shown as follows:
![image](https://user-images.githubusercontent.com/26813582/201585974-1360e2b5-f95f-4273-8cbf-6024e33204ab.png)
<div align="center">
<img src="https://user-images.githubusercontent.com/26813582/201585974-1360e2b5-f95f-4273-8cbf-6024e33204ab.png" height="500"/>
</div>
1. `load metainfo`: Obtain the meta information of the dataset. The meta information can be obtained from three sources with the priority from high to low:

View File

@ -57,7 +57,9 @@ data
数据集基类的初始化流程如下图所示:
![image](https://user-images.githubusercontent.com/26813582/201585974-1360e2b5-f95f-4273-8cbf-6024e33204ab.png)
<div align="center">
<img src="https://user-images.githubusercontent.com/26813582/201585974-1360e2b5-f95f-4273-8cbf-6024e33204ab.png" height="500"/>
</div>
1. `load metainfo`:获取数据集的元信息,元信息有三种来源,优先级从高到低为:

View File

@ -138,19 +138,19 @@ class Visualizer(ManagerMixin):
>>> # inherit
>>> class DetLocalVisualizer(Visualizer):
>>> def add_datasample(self,
>>> name,
>>> image: np.ndarray,
>>> gt_sample:
>>> Optional['BaseDataElement'] = None,
>>> pred_sample:
>>> Optional['BaseDataElement'] = None,
>>> draw_gt: bool = True,
>>> draw_pred: bool = True,
>>> show: bool = False,
>>> wait_time: int = 0,
>>> step: int = 0) -> None:
>>> pass
>>> def add_datasample(self,
>>> name,
>>> image: np.ndarray,
>>> gt_sample:
>>> Optional['BaseDataElement'] = None,
>>> pred_sample:
>>> Optional['BaseDataElement'] = None,
>>> draw_gt: bool = True,
>>> draw_pred: bool = True,
>>> show: bool = False,
>>> wait_time: int = 0,
>>> step: int = 0) -> None:
>>> pass
"""
def __init__(
@ -375,9 +375,9 @@ class Visualizer(ManagerMixin):
for more details. Defaults to 'g.
marker (str, optional): The marker style.
See :mod:`matplotlib.markers` for more information about
marker styles. Default to None.
marker styles. Defaults to None.
sizes (Optional[Union[np.ndarray, torch.Tensor]]): The marker size.
Default to None.
Defaults to None.
"""
check_type('positions', positions, (np.ndarray, torch.Tensor))
positions = tensor2ndarray(positions)
@ -443,7 +443,7 @@ class Visualizer(ManagerMixin):
just single value. If ``font_families`` is single value, all
the texts will have the same font family.
font_familiy can be 'serif', 'sans-serif', 'cursive', 'fantasy'
or 'monospace'. Defaults to 'sans-serif'.
or 'monospace'. Defaults to 'sans-serif'.
bboxes (Union[dict, List[dict]], optional): The bounding box of the
texts. If bboxes is None, there are no bounding box around
texts. ``bboxes`` can have the same length with texts or
@ -689,7 +689,7 @@ class Visualizer(ManagerMixin):
If ``line_widths`` is single value, all the lines will
have the same linewidth. Defaults to 2.
face_colors (Union[str, tuple, List[str], List[tuple]]):
The face colors. Default to None.
The face colors. Defaults to None.
alpha (Union[int, float]): The transparency of bboxes.
Defaults to 0.8.
"""
@ -734,7 +734,7 @@ class Visualizer(ManagerMixin):
"""Draw single or multiple bboxes.
Args:
polygons (Union[Union[np.ndarray, torch.Tensor],
polygons (Union[Union[np.ndarray, torch.Tensor],\
List[Union[np.ndarray, torch.Tensor]]]): The polygons to draw
with the format of (x1,y1,x2,y2,...,xn,yn).
edge_colors (Union[str, tuple, List[str], List[tuple]]): The
@ -756,7 +756,7 @@ class Visualizer(ManagerMixin):
If ``line_widths`` is single value, all the lines will
have the same linewidth. Defaults to 2.
face_colors (Union[str, tuple, List[str], List[tuple]]):
The face colors. Default to None.
The face colors. Defaults to None.
alpha (Union[int, float]): The transparency of polygons.
Defaults to 0.8.
"""
@ -871,28 +871,28 @@ class Visualizer(ManagerMixin):
"""Draw featmap.
- If `overlaid_image` is not None, the final output image will be the
weighted sum of img and featmap.
weighted sum of img and featmap.
- If `resize_shape` is specified, `featmap` and `overlaid_image`
are interpolated.
are interpolated.
- If `resize_shape` is None and `overlaid_image` is not None,
the feature map will be interpolated to the spatial size of the image
in the case where the spatial dimensions of `overlaid_image` and
`featmap` are different.
the feature map will be interpolated to the spatial size of the image
in the case where the spatial dimensions of `overlaid_image` and
`featmap` are different.
- If `channel_reduction` is "squeeze_mean" and "select_max",
it will compress featmap to single channel image and weighted
sum to `overlaid_image`.
it will compress featmap to single channel image and weighted
sum to `overlaid_image`.
- if `channel_reduction` is None
- If topk <= 0, featmap is assert to be one or three
channel and treated as image and will be weighted sum
to ``overlaid_image``.
channel and treated as image and will be weighted sum
to ``overlaid_image``.
- If topk > 0, it will select topk channel to show by the sum of
each channel. At the same time, you can specify the `arrangement`
to set the window layout.
each channel. At the same time, you can specify the `arrangement`
to set the window layout.
Args:
featmap (torch.Tensor): The featmap to draw which format is