[Fix] Delete frozen parameters when using `paramwise_cfg` (#1441)
parent
9ecced821b
commit
acbc5e46dc
|
@ -213,7 +213,10 @@ class DefaultOptimWrapperConstructor:
|
|||
level=logging.WARNING)
|
||||
continue
|
||||
if not param.requires_grad:
|
||||
params.append(param_group)
|
||||
print_log((f'{prefix}.{name} is skipped since its '
|
||||
f'requires_grad={param.requires_grad}'),
|
||||
logger='current',
|
||||
level=logging.WARNING)
|
||||
continue
|
||||
|
||||
# if the parameter match one of the custom keys, ignore other rules
|
||||
|
|
|
@ -549,7 +549,8 @@ class TestBuilder(TestCase):
|
|||
weight_decay=self.base_wd,
|
||||
momentum=self.momentum))
|
||||
paramwise_cfg = dict()
|
||||
optim_constructor = DefaultOptimWrapperConstructor(optim_wrapper_cfg)
|
||||
optim_constructor = DefaultOptimWrapperConstructor(
|
||||
optim_wrapper_cfg, paramwise_cfg)
|
||||
optim_wrapper = optim_constructor(model)
|
||||
self._check_default_optimizer(optim_wrapper.optimizer, model)
|
||||
|
||||
|
@ -591,23 +592,16 @@ class TestBuilder(TestCase):
|
|||
dwconv_decay_mult=0.1,
|
||||
dcn_offset_lr_mult=0.1)
|
||||
|
||||
for param in self.model.parameters():
|
||||
param.requires_grad = False
|
||||
self.model.conv1.requires_grad_(False)
|
||||
optim_constructor = DefaultOptimWrapperConstructor(
|
||||
optim_wrapper_cfg, paramwise_cfg)
|
||||
optim_wrapper = optim_constructor(self.model)
|
||||
optimizer = optim_wrapper.optimizer
|
||||
param_groups = optimizer.param_groups
|
||||
assert isinstance(optim_wrapper.optimizer, torch.optim.SGD)
|
||||
assert optimizer.defaults['lr'] == self.base_lr
|
||||
assert optimizer.defaults['momentum'] == self.momentum
|
||||
assert optimizer.defaults['weight_decay'] == self.base_wd
|
||||
for i, (name, param) in enumerate(self.model.named_parameters()):
|
||||
param_group = param_groups[i]
|
||||
assert torch.equal(param_group['params'][0], param)
|
||||
assert param_group['momentum'] == self.momentum
|
||||
assert param_group['lr'] == self.base_lr
|
||||
assert param_group['weight_decay'] == self.base_wd
|
||||
|
||||
all_params = []
|
||||
for pg in optim_wrapper.param_groups:
|
||||
all_params.extend(map(id, pg['params']))
|
||||
self.assertNotIn(id(self.model.conv1.weight), all_params)
|
||||
self.assertIn(id(self.model.conv2.weight), all_params)
|
||||
|
||||
def test_default_optimizer_constructor_bypass_duplicate(self):
|
||||
# paramwise_cfg with bypass_duplicate option
|
||||
|
@ -663,10 +657,8 @@ class TestBuilder(TestCase):
|
|||
optim_wrapper = optim_constructor(model)
|
||||
model_parameters = list(model.parameters())
|
||||
num_params = 14 if MMCV_FULL_AVAILABLE else 11
|
||||
assert len(optim_wrapper.optimizer.param_groups) == len(
|
||||
model_parameters) == num_params
|
||||
self._check_sgd_optimizer(optim_wrapper.optimizer, model,
|
||||
**paramwise_cfg)
|
||||
assert len(optim_wrapper.optimizer.param_groups
|
||||
) == len(model_parameters) - 1 == num_params - 1
|
||||
|
||||
def test_default_optimizer_constructor_custom_key(self):
|
||||
# test DefaultOptimWrapperConstructor with custom_keys and
|
||||
|
|
Loading…
Reference in New Issue