[Refactor] Refactor ema hook (#804)

* Refacot ema hook unit test

* Refacot ema hook unit test

* Enhance test_after_load_checkpoint

* refine error messsage

* Refine as comment

---------

Co-authored-by: Zaida Zhou <58739961+zhouzaida@users.noreply.github.com>

Fix unit test
This commit is contained in:
Mashiro 2023-02-21 20:45:11 +08:00 committed by Zaida Zhou
parent aa69ba1a86
commit b14c179fad
3 changed files with 272 additions and 243 deletions

View File

@ -50,9 +50,11 @@ class EMAHook(Hook):
assert not (begin_iter != 0 and begin_epoch != 0), ( assert not (begin_iter != 0 and begin_epoch != 0), (
'`begin_iter` and `begin_epoch` should not be both set.') '`begin_iter` and `begin_epoch` should not be both set.')
assert begin_iter >= 0, ( assert begin_iter >= 0, (
f'begin_iter must larger than 0, but got begin: {begin_iter}') '`begin_iter` must larger than or equal to 0, '
f'but got begin_iter: {begin_iter}')
assert begin_epoch >= 0, ( assert begin_epoch >= 0, (
f'begin_epoch must larger than 0, but got begin: {begin_epoch}') '`begin_epoch` must larger than or equal to 0, '
f'but got begin_epoch: {begin_epoch}')
self.begin_iter = begin_iter self.begin_iter = begin_iter
self.begin_epoch = begin_epoch self.begin_epoch = begin_epoch
# If `begin_epoch` and `begin_iter` are not set, `EMAHook` will be # If `begin_epoch` and `begin_iter` are not set, `EMAHook` will be
@ -80,12 +82,14 @@ class EMAHook(Hook):
""" """
if self.enabled_by_epoch: if self.enabled_by_epoch:
assert self.begin_epoch <= runner.max_epochs, ( assert self.begin_epoch <= runner.max_epochs, (
'self.begin_epoch should be smaller than runner.max_epochs: ' 'self.begin_epoch should be smaller than or equal to '
f'{runner.max_epochs}, but got begin: {self.begin_epoch}') f'runner.max_epochs: {runner.max_epochs}, but got '
f'begin_epoch: {self.begin_epoch}')
else: else:
assert self.begin_iter <= runner.max_iters, ( assert self.begin_iter <= runner.max_iters, (
'self.begin_iter should be smaller than runner.max_iters: ' 'self.begin_iter should be smaller than or equal to '
f'{runner.max_iters}, but got begin: {self.begin_iter}') f'runner.max_iters: {runner.max_iters}, but got '
f'begin_iter: {self.begin_iter}')
def after_train_iter(self, def after_train_iter(self,
runner, runner,

View File

@ -1,58 +1,35 @@
# Copyright (c) OpenMMLab. All rights reserved. # Copyright (c) OpenMMLab. All rights reserved.
import logging import copy
import os.path as osp import os.path as osp
import tempfile
from unittest import TestCase
from unittest.mock import Mock
import torch import torch
import torch.nn as nn import torch.nn as nn
from torch.utils.data import Dataset
from mmengine.evaluator import Evaluator from mmengine.config import ConfigDict
from mmengine.hooks import EMAHook from mmengine.hooks import EMAHook
from mmengine.logging import MMLogger
from mmengine.model import BaseModel, ExponentialMovingAverage from mmengine.model import BaseModel, ExponentialMovingAverage
from mmengine.optim import OptimWrapper from mmengine.registry import MODELS
from mmengine.registry import DATASETS, MODEL_WRAPPERS from mmengine.testing import RunnerTestCase, assert_allclose
from mmengine.runner import Runner from mmengine.testing.runner_test_case import ToyModel
from mmengine.testing import assert_allclose
class ToyModel(BaseModel): class DummyWrapper(BaseModel):
def __init__(self): def __init__(self, model):
super().__init__()
self.linear = nn.Linear(2, 1)
def forward(self, inputs, data_sample, mode='tensor'):
labels = torch.stack(data_sample)
inputs = torch.stack(inputs)
outputs = self.linear(inputs)
if mode == 'tensor':
return outputs
elif mode == 'loss':
loss = (labels - outputs).sum()
outputs = dict(loss=loss)
return outputs
else:
return outputs
class ToyModel1(ToyModel):
def __init__(self):
super().__init__() super().__init__()
if not isinstance(model, nn.Module):
model = MODELS.build(model)
self.module = model
def forward(self, *args, **kwargs): def forward(self, *args, **kwargs):
return super().forward(*args, **kwargs) return self.module(*args, **kwargs)
class ToyModel2(ToyModel): class ToyModel2(ToyModel):
def __init__(self): def __init__(self):
super().__init__() super().__init__()
self.linear1 = nn.Linear(2, 1) self.linear3 = nn.Linear(2, 1)
def forward(self, *args, **kwargs): def forward(self, *args, **kwargs):
return super().forward(*args, **kwargs) return super().forward(*args, **kwargs)
@ -62,239 +39,247 @@ class ToyModel3(ToyModel):
def __init__(self): def __init__(self):
super().__init__() super().__init__()
self.linear = nn.Linear(2, 2) self.linear2 = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 1))
def forward(self, *args, **kwargs): def forward(self, *args, **kwargs):
return super().forward(*args, **kwargs) return super().forward(*args, **kwargs)
@DATASETS.register_module() class TestEMAHook(RunnerTestCase):
class DummyDataset(Dataset):
METAINFO = dict() # type: ignore
data = torch.randn(12, 2)
label = torch.ones(12)
@property def setUp(self) -> None:
def metainfo(self): MODELS.register_module(name='DummyWrapper', module=DummyWrapper)
return self.METAINFO MODELS.register_module(name='ToyModel2', module=ToyModel2)
MODELS.register_module(name='ToyModel3', module=ToyModel3)
def __len__(self): return super().setUp()
return self.data.size(0)
def __getitem__(self, index):
return dict(inputs=self.data[index], data_sample=self.label[index])
class TestEMAHook(TestCase):
def setUp(self):
self.temp_dir = tempfile.TemporaryDirectory()
def tearDown(self): def tearDown(self):
# `FileHandler` should be closed in Windows, otherwise we cannot MODELS.module_dict.pop('DummyWrapper')
# delete the temporary directory MODELS.module_dict.pop('ToyModel2')
logging.shutdown() MODELS.module_dict.pop('ToyModel3')
MMLogger._instance_dict.clear() return super().tearDown()
self.temp_dir.cleanup()
def test_ema_hook(self): def test_init(self):
device = 'cuda:0' if torch.cuda.is_available() else 'cpu' EMAHook()
model = ToyModel1().to(device)
evaluator = Evaluator([]) with self.assertRaisesRegex(AssertionError, '`begin_iter` must'):
evaluator.evaluate = Mock(return_value=dict(acc=0.5)) EMAHook(begin_iter=-1)
runner = Runner(
model=model, with self.assertRaisesRegex(AssertionError, '`begin_epoch` must'):
train_dataloader=dict( EMAHook(begin_epoch=-1)
dataset=dict(type='DummyDataset'),
sampler=dict(type='DefaultSampler', shuffle=True), with self.assertRaisesRegex(AssertionError,
batch_size=3, '`begin_iter` and `begin_epoch`'):
num_workers=0), EMAHook(begin_iter=1, begin_epoch=1)
val_dataloader=dict(
dataset=dict(type='DummyDataset'), def _get_ema_hook(self, runner):
sampler=dict(type='DefaultSampler', shuffle=False),
batch_size=3,
num_workers=0),
val_evaluator=evaluator,
work_dir=self.temp_dir.name,
optim_wrapper=OptimWrapper(
torch.optim.Adam(ToyModel().parameters())),
train_cfg=dict(by_epoch=True, max_epochs=2, val_interval=1),
val_cfg=dict(),
default_hooks=dict(logger=None),
custom_hooks=[dict(type='EMAHook', )],
experiment_name='test1')
runner.train()
for hook in runner.hooks: for hook in runner.hooks:
if isinstance(hook, EMAHook): if isinstance(hook, EMAHook):
self.assertTrue( return hook
isinstance(hook.ema_model, ExponentialMovingAverage))
def test_before_run(self):
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.custom_hooks = [dict(type='EMAHook')]
runner = self.build_runner(cfg)
ema_hook = self._get_ema_hook(runner)
ema_hook.before_run(runner)
self.assertIsInstance(ema_hook.ema_model, ExponentialMovingAverage)
self.assertIs(ema_hook.src_model, runner.model)
def test_before_train(self):
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.custom_hooks = [
dict(type='EMAHook', begin_epoch=cfg.train_cfg.max_epochs - 1)
]
runner = self.build_runner(cfg)
ema_hook = self._get_ema_hook(runner)
ema_hook.before_train(runner)
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.custom_hooks = [
dict(type='EMAHook', begin_epoch=cfg.train_cfg.max_epochs + 1)
]
runner = self.build_runner(cfg)
ema_hook = self._get_ema_hook(runner)
with self.assertRaisesRegex(AssertionError, 'self.begin_epoch'):
ema_hook.before_train(runner)
cfg = copy.deepcopy(self.iter_based_cfg)
cfg.custom_hooks = [
dict(type='EMAHook', begin_iter=cfg.train_cfg.max_iters + 1)
]
runner = self.build_runner(cfg)
ema_hook = self._get_ema_hook(runner)
with self.assertRaisesRegex(AssertionError, 'self.begin_iter'):
ema_hook.before_train(runner)
def test_after_train_iter(self):
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.custom_hooks = [dict(type='EMAHook')]
runner = self.build_runner(cfg)
ema_hook = self._get_ema_hook(runner)
ema_hook = self._get_ema_hook(runner)
ema_hook.before_run(runner)
ema_hook.before_train(runner)
src_model = runner.model
ema_model = ema_hook.ema_model
with torch.no_grad():
for parameter in src_model.parameters():
parameter.data.copy_(torch.randn(parameter.shape))
ema_hook.after_train_iter(runner, 1)
for src, ema in zip(src_model.parameters(), ema_model.parameters()):
assert_allclose(src.data, ema.data)
with torch.no_grad():
for parameter in src_model.parameters():
parameter.data.copy_(torch.randn(parameter.shape))
ema_hook.after_train_iter(runner, 1)
for src, ema in zip(src_model.parameters(), ema_model.parameters()):
self.assertFalse((src.data == ema.data).all())
def test_before_val_epoch(self):
self._test_swap_parameters('before_val_epoch')
def test_after_val_epoch(self):
self._test_swap_parameters('after_val_epoch')
def test_before_test_epoch(self):
self._test_swap_parameters('before_test_epoch')
def test_after_test_epoch(self):
self._test_swap_parameters('after_test_epoch')
def test_before_save_checkpoint(self):
cfg = copy.deepcopy(self.epoch_based_cfg)
runner = self.build_runner(cfg)
checkpoint = dict(state_dict=ToyModel().state_dict())
ema_hook = EMAHook()
ema_hook.before_run(runner)
ema_hook.before_train(runner)
ori_checkpoint = copy.deepcopy(checkpoint)
ema_hook.before_save_checkpoint(runner, checkpoint)
for key in ori_checkpoint['state_dict'].keys():
assert_allclose(
ori_checkpoint['state_dict'][key].cpu(),
checkpoint['ema_state_dict'][f'module.{key}'].cpu())
assert_allclose(
ema_hook.ema_model.state_dict()[f'module.{key}'].cpu(),
checkpoint['state_dict'][key].cpu())
def test_after_load_checkpoint(self):
# Test load a checkpoint without ema_state_dict.
cfg = copy.deepcopy(self.epoch_based_cfg)
runner = self.build_runner(cfg)
checkpoint = dict(state_dict=ToyModel().state_dict())
ema_hook = EMAHook()
ema_hook.before_run(runner)
ema_hook.before_train(runner)
ema_hook.after_load_checkpoint(runner, checkpoint)
for key in checkpoint['state_dict'].keys():
assert_allclose(
checkpoint['state_dict'][key].cpu(),
ema_hook.ema_model.state_dict()[f'module.{key}'].cpu())
# Test a warning should be raised when resuming from a checkpoint
# without `ema_state_dict`
runner._resume = True
ema_hook.after_load_checkpoint(runner, checkpoint)
with self.assertLogs(runner.logger, level='WARNING') as cm:
ema_hook.after_load_checkpoint(runner, checkpoint)
self.assertRegex(cm.records[0].msg, 'There is no `ema_state_dict`')
# Check the weight of state_dict and ema_state_dict have been swapped.
# when runner._resume is True
runner._resume = True
checkpoint = dict(
state_dict=ToyModel().state_dict(),
ema_state_dict=ExponentialMovingAverage(ToyModel()).state_dict())
ori_checkpoint = copy.deepcopy(checkpoint)
ema_hook.after_load_checkpoint(runner, checkpoint)
for key in ori_checkpoint['state_dict'].keys():
assert_allclose(
ori_checkpoint['state_dict'][key].cpu(),
ema_hook.ema_model.state_dict()[f'module.{key}'].cpu())
runner._resume = False
ema_hook.after_load_checkpoint(runner, checkpoint)
def test_with_runner(self):
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.custom_hooks = [ConfigDict(type='EMAHook')]
runner = self.build_runner(cfg)
ema_hook = self._get_ema_hook(runner)
runner.train()
self.assertTrue( self.assertTrue(
osp.exists(osp.join(self.temp_dir.name, 'epoch_2.pth'))) isinstance(ema_hook.ema_model, ExponentialMovingAverage))
checkpoint = torch.load(osp.join(self.temp_dir.name, 'epoch_2.pth')) checkpoint = torch.load(osp.join(self.temp_dir.name, 'epoch_2.pth'))
self.assertTrue('ema_state_dict' in checkpoint) self.assertTrue('ema_state_dict' in checkpoint)
self.assertTrue(checkpoint['ema_state_dict']['steps'] == 8) self.assertTrue(checkpoint['ema_state_dict']['steps'] == 8)
# load and testing # load and testing
runner = Runner( cfg.load_from = osp.join(self.temp_dir.name, 'epoch_2.pth')
model=model, runner = self.build_runner(cfg)
test_dataloader=dict(
dataset=dict(type='DummyDataset'),
sampler=dict(type='DefaultSampler', shuffle=True),
batch_size=3,
num_workers=0),
test_evaluator=evaluator,
test_cfg=dict(),
work_dir=self.temp_dir.name,
load_from=osp.join(self.temp_dir.name, 'epoch_2.pth'),
default_hooks=dict(logger=None),
custom_hooks=[dict(type='EMAHook')],
experiment_name='test2')
runner.test() runner.test()
@MODEL_WRAPPERS.register_module()
class DummyWrapper(BaseModel):
def __init__(self, model):
super().__init__()
self.module = model
def forward(self, *args, **kwargs):
return self.module(*args, **kwargs)
# with model wrapper # with model wrapper
runner = Runner( cfg.model = ConfigDict(type='DummyWrapper', model=cfg.model)
model=DummyWrapper(ToyModel()), runner = self.build_runner(cfg)
test_dataloader=dict(
dataset=dict(type='DummyDataset'),
sampler=dict(type='DefaultSampler', shuffle=True),
batch_size=3,
num_workers=0),
test_evaluator=evaluator,
test_cfg=dict(),
work_dir=self.temp_dir.name,
load_from=osp.join(self.temp_dir.name, 'epoch_2.pth'),
default_hooks=dict(logger=None),
custom_hooks=[dict(type='EMAHook')],
experiment_name='test3')
runner.test() runner.test()
# Test load checkpoint without ema_state_dict # Test load checkpoint without ema_state_dict
ckpt = torch.load(osp.join(self.temp_dir.name, 'epoch_2.pth')) checkpoint = torch.load(osp.join(self.temp_dir.name, 'epoch_2.pth'))
ckpt.pop('ema_state_dict') checkpoint.pop('ema_state_dict')
torch.save(ckpt, torch.save(checkpoint,
osp.join(self.temp_dir.name, 'without_ema_state_dict.pth')) osp.join(self.temp_dir.name, 'without_ema_state_dict.pth'))
runner = Runner(
model=DummyWrapper(ToyModel()), cfg.load_from = osp.join(self.temp_dir.name,
test_dataloader=dict( 'without_ema_state_dict.pth')
dataset=dict(type='DummyDataset'), runner = self.build_runner(cfg)
sampler=dict(type='DefaultSampler', shuffle=True),
batch_size=3,
num_workers=0),
test_evaluator=evaluator,
test_cfg=dict(),
work_dir=self.temp_dir.name,
load_from=osp.join(self.temp_dir.name,
'without_ema_state_dict.pth'),
default_hooks=dict(logger=None),
custom_hooks=[dict(type='EMAHook')],
experiment_name='test4')
runner.test() runner.test()
# Test does not load ckpt strict_loadly. # Test does not load checkpoint strictly (different name).
# Test load checkpoint without ema_state_dict # Test load checkpoint without ema_state_dict
runner = Runner( cfg.model = ConfigDict(type='ToyModel2')
model=ToyModel2(), cfg.custom_hooks = [ConfigDict(type='EMAHook', strict_load=False)]
test_dataloader=dict( runner = self.build_runner(cfg)
dataset=dict(type='DummyDataset'),
sampler=dict(type='DefaultSampler', shuffle=True),
batch_size=3,
num_workers=0),
test_evaluator=evaluator,
test_cfg=dict(),
work_dir=self.temp_dir.name,
load_from=osp.join(self.temp_dir.name, 'epoch_2.pth'),
default_hooks=dict(logger=None),
custom_hooks=[dict(type='EMAHook', strict_load=False)],
experiment_name='test5')
runner.test() runner.test()
# Test does not load ckpt strict_loadly. # Test does not load ckpt strictly (different weight size).
# Test load checkpoint without ema_state_dict # Test load checkpoint without ema_state_dict
# Test with different size head. cfg.model = ConfigDict(type='ToyModel3')
runner = Runner( runner = self.build_runner(cfg)
model=ToyModel3(),
test_dataloader=dict(
dataset=dict(type='DummyDataset'),
sampler=dict(type='DefaultSampler', shuffle=True),
batch_size=3,
num_workers=0),
test_evaluator=evaluator,
test_cfg=dict(),
work_dir=self.temp_dir.name,
load_from=osp.join(self.temp_dir.name,
'without_ema_state_dict.pth'),
default_hooks=dict(logger=None),
custom_hooks=[dict(type='EMAHook', strict_load=False)],
experiment_name='test5.1')
runner.test() runner.test()
# Test enable ema at 5 epochs. # Test enable ema at 5 epochs.
runner = Runner( cfg.train_cfg.max_epochs = 10
model=model, cfg.custom_hooks = [ConfigDict(type='EMAHook', begin_epoch=5)]
train_dataloader=dict( runner = self.build_runner(cfg)
dataset=dict(type='DummyDataset'),
sampler=dict(type='DefaultSampler', shuffle=True),
batch_size=3,
num_workers=0),
val_dataloader=dict(
dataset=dict(type='DummyDataset'),
sampler=dict(type='DefaultSampler', shuffle=False),
batch_size=3,
num_workers=0),
val_evaluator=evaluator,
work_dir=self.temp_dir.name,
optim_wrapper=OptimWrapper(
torch.optim.Adam(ToyModel().parameters())),
train_cfg=dict(by_epoch=True, max_epochs=10, val_interval=1),
val_cfg=dict(),
default_hooks=dict(logger=None),
custom_hooks=[dict(type='EMAHook', begin_epoch=5)],
experiment_name='test6')
runner.train() runner.train()
state_dict = torch.load( state_dict = torch.load(
osp.join(self.temp_dir.name, 'epoch_4.pth'), map_location='cpu') osp.join(self.temp_dir.name, 'epoch_4.pth'), map_location='cpu')
self.assertIn('ema_state_dict', state_dict) self.assertIn('ema_state_dict', state_dict)
for k, v in state_dict['state_dict'].items(): for k, v in state_dict['state_dict'].items():
assert_allclose(v, state_dict['ema_state_dict']['module.' + k]) assert_allclose(v, state_dict['ema_state_dict']['module.' + k])
state_dict = torch.load(
osp.join(self.temp_dir.name, 'epoch_5.pth'), map_location='cpu')
self.assertIn('ema_state_dict', state_dict)
# Test enable ema at 5 iterations. # Test enable ema at 5 iterations.
runner = Runner( cfg = copy.deepcopy(self.iter_based_cfg)
model=model, cfg.train_cfg.val_interval = 1
train_dataloader=dict( cfg.custom_hooks = [ConfigDict(type='EMAHook', begin_iter=5)]
dataset=dict(type='DummyDataset'), cfg.default_hooks.checkpoint.interval = 1
sampler=dict(type='DefaultSampler', shuffle=True), runner = self.build_runner(cfg)
batch_size=3,
num_workers=0),
val_dataloader=dict(
dataset=dict(type='DummyDataset'),
sampler=dict(type='DefaultSampler', shuffle=False),
batch_size=3,
num_workers=0),
val_evaluator=evaluator,
work_dir=self.temp_dir.name,
optim_wrapper=OptimWrapper(
torch.optim.Adam(ToyModel().parameters())),
train_cfg=dict(by_epoch=False, max_iters=10, val_interval=1),
val_cfg=dict(),
default_hooks=dict(
checkpoint=dict(
type='CheckpointHook', interval=1, by_epoch=False)),
custom_hooks=[dict(type='EMAHook', begin_iter=5)],
experiment_name='test7')
runner.train() runner.train()
state_dict = torch.load( state_dict = torch.load(
osp.join(self.temp_dir.name, 'iter_4.pth'), map_location='cpu') osp.join(self.temp_dir.name, 'iter_4.pth'), map_location='cpu')
@ -304,3 +289,30 @@ class TestEMAHook(TestCase):
state_dict = torch.load( state_dict = torch.load(
osp.join(self.temp_dir.name, 'iter_5.pth'), map_location='cpu') osp.join(self.temp_dir.name, 'iter_5.pth'), map_location='cpu')
self.assertIn('ema_state_dict', state_dict) self.assertIn('ema_state_dict', state_dict)
def _test_swap_parameters(self, func_name, *args, **kwargs):
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.custom_hooks = [dict(type='EMAHook')]
runner = self.build_runner(cfg)
ema_hook = self._get_ema_hook(runner)
runner.train()
with torch.no_grad():
for parameter in ema_hook.src_model.parameters():
parameter.data.copy_(torch.randn(parameter.shape))
src_model = copy.deepcopy(runner.model)
ema_model = copy.deepcopy(ema_hook.ema_model)
func = getattr(ema_hook, func_name)
func(runner, *args, **kwargs)
swapped_src = ema_hook.src_model
swapped_ema = ema_hook.ema_model
for src, ema, swapped_src, swapped_ema in zip(
src_model.parameters(), ema_model.parameters(),
swapped_src.parameters(), swapped_ema.parameters()):
self.assertTrue((src.data == swapped_ema.data).all())
self.assertTrue((ema.data == swapped_src.data).all())

View File

@ -7,21 +7,37 @@ from torch.optim import SGD
from mmengine.hooks import RuntimeInfoHook from mmengine.hooks import RuntimeInfoHook
from mmengine.optim import OptimWrapper, OptimWrapperDict from mmengine.optim import OptimWrapper, OptimWrapperDict
from mmengine.registry import DATASETS
from mmengine.testing import RunnerTestCase from mmengine.testing import RunnerTestCase
class TestRuntimeInfoHook(RunnerTestCase): class DatasetWithoutMetainfo:
def test_before_train(self):
class DatasetWithoutMetainfo:
... ...
def __len__(self): def __len__(self):
return 12 return 12
class DatasetWithMetainfo(DatasetWithoutMetainfo):
metainfo: dict = dict()
class TestRuntimeInfoHook(RunnerTestCase):
def setUp(self) -> None:
DATASETS.register_module(module=DatasetWithoutMetainfo, force=True)
DATASETS.register_module(module=DatasetWithMetainfo, force=True)
return super().setUp()
def tearDown(self):
DATASETS.module_dict.pop('DatasetWithoutMetainfo')
DATASETS.module_dict.pop('DatasetWithMetainfo')
return super().tearDown()
def test_before_train(self):
cfg = copy.deepcopy(self.epoch_based_cfg) cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.train_dataloader.dataset.type = DatasetWithoutMetainfo cfg.train_dataloader.dataset.type = 'DatasetWithoutMetainfo'
runner = self.build_runner(cfg) runner = self.build_runner(cfg)
hook = self._get_runtime_info_hook(runner) hook = self._get_runtime_info_hook(runner)
hook.before_train(runner) hook.before_train(runner)
@ -33,10 +49,7 @@ class TestRuntimeInfoHook(RunnerTestCase):
with self.assertRaisesRegex(KeyError, 'dataset_meta is not found'): with self.assertRaisesRegex(KeyError, 'dataset_meta is not found'):
runner.message_hub.get_info('dataset_meta') runner.message_hub.get_info('dataset_meta')
class DatasetWithMetainfo(DatasetWithoutMetainfo): cfg.train_dataloader.dataset.type = 'DatasetWithMetainfo'
metainfo = dict()
cfg.train_dataloader.dataset.type = DatasetWithMetainfo
runner = self.build_runner(cfg) runner = self.build_runner(cfg)
hook.before_train(runner) hook.before_train(runner)
self.assertEqual(runner.message_hub.get_info('dataset_meta'), dict()) self.assertEqual(runner.message_hub.get_info('dataset_meta'), dict())