mirror of
https://github.com/open-mmlab/mmengine.git
synced 2025-06-03 21:54:44 +08:00
[Feature] Implement gradient checkpointing (#1319)
This commit is contained in:
parent
9aa883a24c
commit
ccd17571ce
@ -1,5 +1,6 @@
|
|||||||
# Copyright (c) OpenMMLab. All rights reserved.
|
# Copyright (c) OpenMMLab. All rights reserved.
|
||||||
from ._flexible_runner import FlexibleRunner
|
from ._flexible_runner import FlexibleRunner
|
||||||
|
from .activation_checkpointing import turn_on_activation_checkpointing
|
||||||
from .amp import autocast
|
from .amp import autocast
|
||||||
from .base_loop import BaseLoop
|
from .base_loop import BaseLoop
|
||||||
from .checkpoint import (CheckpointLoader, find_latest_checkpoint,
|
from .checkpoint import (CheckpointLoader, find_latest_checkpoint,
|
||||||
@ -19,5 +20,6 @@ __all__ = [
|
|||||||
'CheckpointLoader', 'load_checkpoint', 'weights_to_cpu', 'get_state_dict',
|
'CheckpointLoader', 'load_checkpoint', 'weights_to_cpu', 'get_state_dict',
|
||||||
'save_checkpoint', 'EpochBasedTrainLoop', 'IterBasedTrainLoop', 'ValLoop',
|
'save_checkpoint', 'EpochBasedTrainLoop', 'IterBasedTrainLoop', 'ValLoop',
|
||||||
'TestLoop', 'Runner', 'get_priority', 'Priority', 'find_latest_checkpoint',
|
'TestLoop', 'Runner', 'get_priority', 'Priority', 'find_latest_checkpoint',
|
||||||
'autocast', 'LogProcessor', 'set_random_seed', 'FlexibleRunner'
|
'autocast', 'LogProcessor', 'set_random_seed', 'FlexibleRunner',
|
||||||
|
'turn_on_activation_checkpointing'
|
||||||
]
|
]
|
||||||
|
26
mmengine/runner/activation_checkpointing.py
Normal file
26
mmengine/runner/activation_checkpointing.py
Normal file
@ -0,0 +1,26 @@
|
|||||||
|
# Copyright (c) OpenMMLab. All rights reserved.
|
||||||
|
from functools import wraps
|
||||||
|
from operator import attrgetter
|
||||||
|
from typing import List, Union
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch.utils.checkpoint import checkpoint
|
||||||
|
|
||||||
|
|
||||||
|
def wrap_forward(forward):
|
||||||
|
|
||||||
|
@wraps(forward)
|
||||||
|
def wrapper(*args):
|
||||||
|
return checkpoint(forward, *args)
|
||||||
|
|
||||||
|
return wrapper
|
||||||
|
|
||||||
|
|
||||||
|
def turn_on_activation_checkpointing(model: torch.nn.Module,
|
||||||
|
modules: Union[List[str], str]):
|
||||||
|
|
||||||
|
if isinstance(modules, str):
|
||||||
|
modules = [modules]
|
||||||
|
for module_name in modules:
|
||||||
|
module = attrgetter(module_name)(model)
|
||||||
|
module.forward = wrap_forward(module.forward)
|
@ -41,6 +41,7 @@ from mmengine.utils import apply_to, digit_version, get_git_hash, is_seq_of
|
|||||||
from mmengine.utils.dl_utils import (TORCH_VERSION, collect_env,
|
from mmengine.utils.dl_utils import (TORCH_VERSION, collect_env,
|
||||||
set_multi_processing)
|
set_multi_processing)
|
||||||
from mmengine.visualization import Visualizer
|
from mmengine.visualization import Visualizer
|
||||||
|
from .activation_checkpointing import turn_on_activation_checkpointing
|
||||||
from .base_loop import BaseLoop
|
from .base_loop import BaseLoop
|
||||||
from .checkpoint import (_load_checkpoint, _load_checkpoint_to_model,
|
from .checkpoint import (_load_checkpoint, _load_checkpoint_to_model,
|
||||||
find_latest_checkpoint, save_checkpoint,
|
find_latest_checkpoint, save_checkpoint,
|
||||||
@ -1722,6 +1723,13 @@ class Runner:
|
|||||||
# initialize the model weights
|
# initialize the model weights
|
||||||
self._init_model_weights()
|
self._init_model_weights()
|
||||||
|
|
||||||
|
# try to enable activation_checkpointing feature
|
||||||
|
modules = self.cfg.get('activation_checkpointing', None)
|
||||||
|
if modules is not None:
|
||||||
|
self.logger.info(f'Enabling the "activation_checkpointing" feature'
|
||||||
|
f' for sub-modules: {modules}')
|
||||||
|
turn_on_activation_checkpointing(ori_model, modules)
|
||||||
|
|
||||||
# try to enable efficient_conv_bn_eval feature
|
# try to enable efficient_conv_bn_eval feature
|
||||||
modules = self.cfg.get('efficient_conv_bn_eval', None)
|
modules = self.cfg.get('efficient_conv_bn_eval', None)
|
||||||
if modules is not None:
|
if modules is not None:
|
||||||
|
55
tests/test_runner/test_activation_checkpointing.py
Normal file
55
tests/test_runner/test_activation_checkpointing.py
Normal file
@ -0,0 +1,55 @@
|
|||||||
|
# Copyright (c) OpenMMLab. All rights reserved.
|
||||||
|
from unittest import TestCase
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from torch import nn
|
||||||
|
|
||||||
|
from mmengine.runner.activation_checkpointing import \
|
||||||
|
turn_on_activation_checkpointing
|
||||||
|
from mmengine.testing import assert_allclose
|
||||||
|
|
||||||
|
|
||||||
|
class Model(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)
|
||||||
|
self.bn1 = nn.BatchNorm2d(16)
|
||||||
|
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
|
||||||
|
self.bn2 = nn.BatchNorm2d(32)
|
||||||
|
self.conv3 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
|
||||||
|
self.bn3 = nn.BatchNorm2d(64)
|
||||||
|
self.pool = nn.AdaptiveAvgPool2d((1, 1))
|
||||||
|
self.fc = nn.Linear(64, 10)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = self.bn1(self.conv1(x))
|
||||||
|
x = F.relu(x)
|
||||||
|
x = self.bn2(self.conv2(x))
|
||||||
|
x = F.relu(x)
|
||||||
|
x = self.bn3(self.conv3(x))
|
||||||
|
x = F.relu(x)
|
||||||
|
x = self.pool(x)
|
||||||
|
x = x.view(x.size(0), -1)
|
||||||
|
x = self.fc(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class TestActivationCheckpointing(TestCase):
|
||||||
|
|
||||||
|
def test_activation_checkpointing(self):
|
||||||
|
model = Model()
|
||||||
|
input = torch.randn(16, 3, 224, 224)
|
||||||
|
input.requires_grad = True
|
||||||
|
output = model(input)
|
||||||
|
output.sum().backward()
|
||||||
|
grad = input.grad.clone()
|
||||||
|
|
||||||
|
turn_on_activation_checkpointing(model, ['conv1', 'conv2', 'conv3'])
|
||||||
|
output2 = model(input)
|
||||||
|
output2.sum().backward()
|
||||||
|
grad2 = input.grad.clone()
|
||||||
|
|
||||||
|
assert_allclose(output, output2)
|
||||||
|
assert_allclose(grad, grad2, rtol=1e-3, atol=1e-3)
|
Loading…
x
Reference in New Issue
Block a user