mirror of
https://github.com/open-mmlab/mmengine.git
synced 2025-06-03 21:54:44 +08:00
[Feature] get_model_complexity_info() supports multiple inputs (#1065)
This commit is contained in:
parent
43165160e6
commit
fafb476e58
@ -12,6 +12,7 @@ from rich.console import Console
|
||||
from rich.table import Table
|
||||
from torch import nn
|
||||
|
||||
from mmengine.utils import is_tuple_of
|
||||
from .complexity_analysis import (ActivationAnalyzer, FlopAnalyzer,
|
||||
parameter_count)
|
||||
|
||||
@ -675,19 +676,38 @@ def complexity_stats_table(
|
||||
|
||||
def get_model_complexity_info(
|
||||
model: nn.Module,
|
||||
input_shape: Optional[tuple] = None,
|
||||
inputs: Union[torch.Tensor, Tuple[torch.Tensor, ...], None] = None,
|
||||
input_shape: Union[Tuple[int, ...], Tuple[Tuple[int, ...], ...],
|
||||
None] = None,
|
||||
inputs: Union[torch.Tensor, Tuple[torch.Tensor, ...], Tuple[Any, ...],
|
||||
None] = None,
|
||||
show_table: bool = True,
|
||||
show_arch: bool = True,
|
||||
):
|
||||
"""Interface to get the complexity of a model.
|
||||
|
||||
The parameter `inputs` are fed to the forward method of model.
|
||||
If `inputs` is not specified, the `input_shape` is required and
|
||||
it will be used to construct the dummy input fed to model.
|
||||
If the forward of model requires two or more inputs, the `inputs`
|
||||
should be a tuple of tensor or the `input_shape` should be a tuple
|
||||
of tuple which each element will be constructed into a dumpy input.
|
||||
|
||||
Examples:
|
||||
>>> # the forward of model accepts only one input
|
||||
>>> input_shape = (3, 224, 224)
|
||||
>>> get_model_complexity_info(model, input_shape=input_shape)
|
||||
>>> # the forward of model accepts two or more inputs
|
||||
>>> input_shape = ((3, 224, 224), (3, 10))
|
||||
>>> get_model_complexity_info(model, input_shape=input_shape)
|
||||
|
||||
Args:
|
||||
model (nn.Module): The model to analyze.
|
||||
input_shape (tuple, optional): The input shape of the model.
|
||||
If inputs is not specified, the input_shape should be set.
|
||||
input_shape (Union[Tuple[int, ...], Tuple[Tuple[int, ...]], None]):
|
||||
The input shape of the model.
|
||||
If "inputs" is not specified, the "input_shape" should be set.
|
||||
Defaults to None.
|
||||
inputs (torch.Tensor or tuple[torch.Tensor, ...], optional]):
|
||||
inputs (torch.Tensor, tuple[torch.Tensor, ...] or Tuple[Any, ...],\
|
||||
optional]):
|
||||
The input tensor(s) of the model. If not given the input tensor
|
||||
will be generated automatically with the given input_shape.
|
||||
Defaults to None.
|
||||
@ -705,7 +725,21 @@ def get_model_complexity_info(
|
||||
raise ValueError('"input_shape" and "inputs" cannot be both set.')
|
||||
|
||||
if inputs is None:
|
||||
inputs = (torch.randn(1, *input_shape), )
|
||||
if is_tuple_of(input_shape, int): # tuple of int, construct one tensor
|
||||
inputs = (torch.randn(1, *input_shape), )
|
||||
elif is_tuple_of(input_shape, tuple) and all([
|
||||
is_tuple_of(one_input_shape, int)
|
||||
for one_input_shape in input_shape # type: ignore
|
||||
]): # tuple of tuple of int, construct multiple tensors
|
||||
inputs = tuple([
|
||||
torch.randn(1, *one_input_shape)
|
||||
for one_input_shape in input_shape # type: ignore
|
||||
])
|
||||
else:
|
||||
raise ValueError(
|
||||
'"input_shape" should be either a `tuple of int` (to construct'
|
||||
'one input tensor) or a `tuple of tuple of int` (to construct'
|
||||
'multiple input tensors).')
|
||||
|
||||
flop_handler = FlopAnalyzer(model, inputs)
|
||||
activation_handler = ActivationAnalyzer(model, inputs)
|
||||
|
108
tests/test_analysis/test_print_helper.py
Normal file
108
tests/test_analysis/test_print_helper.py
Normal file
@ -0,0 +1,108 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from mmengine.analysis.complexity_analysis import FlopAnalyzer, parameter_count
|
||||
from mmengine.analysis.print_helper import get_model_complexity_info
|
||||
from mmengine.utils import digit_version
|
||||
from mmengine.utils.dl_utils import TORCH_VERSION
|
||||
|
||||
|
||||
class NetAcceptOneTensor(nn.Module):
|
||||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
self.l1 = nn.Linear(in_features=5, out_features=6)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
out = self.l1(x)
|
||||
return out
|
||||
|
||||
|
||||
class NetAcceptTwoTensors(nn.Module):
|
||||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
self.l1 = nn.Linear(in_features=5, out_features=6)
|
||||
self.l2 = nn.Linear(in_features=7, out_features=6)
|
||||
|
||||
def forward(self, x1: torch.Tensor, x2: torch.Tensor) -> torch.Tensor:
|
||||
out = self.l1(x1) + self.l2(x2)
|
||||
return out
|
||||
|
||||
|
||||
class NetAcceptOneTensorAndOneScalar(nn.Module):
|
||||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
self.l1 = nn.Linear(in_features=5, out_features=6)
|
||||
self.l2 = nn.Linear(in_features=5, out_features=6)
|
||||
|
||||
def forward(self, x1: torch.Tensor, r) -> torch.Tensor:
|
||||
out = r * self.l1(x1) + (1 - r) * self.l2(x1)
|
||||
return out
|
||||
|
||||
|
||||
def test_get_model_complexity_info():
|
||||
input1 = torch.randn(1, 9, 5)
|
||||
input_shape1 = (9, 5)
|
||||
input2 = torch.randn(1, 9, 7)
|
||||
input_shape2 = (9, 7)
|
||||
scalar = 0.3
|
||||
|
||||
# test a network that accepts one tensor as input
|
||||
model = NetAcceptOneTensor()
|
||||
complexity_info = get_model_complexity_info(model=model, inputs=input1)
|
||||
flops = FlopAnalyzer(model=model, inputs=input1).total()
|
||||
params = parameter_count(model=model)['']
|
||||
assert complexity_info['flops'] == flops
|
||||
assert complexity_info['params'] == params
|
||||
|
||||
complexity_info = get_model_complexity_info(
|
||||
model=model, input_shape=input_shape1)
|
||||
flops = FlopAnalyzer(
|
||||
model=model, inputs=(torch.randn(1, *input_shape1), )).total()
|
||||
assert complexity_info['flops'] == flops
|
||||
|
||||
# test a network that accepts two tensors as input
|
||||
model = NetAcceptTwoTensors()
|
||||
complexity_info = get_model_complexity_info(
|
||||
model=model, inputs=(input1, input2))
|
||||
flops = FlopAnalyzer(model=model, inputs=(input1, input2)).total()
|
||||
params = parameter_count(model=model)['']
|
||||
assert complexity_info['flops'] == flops
|
||||
assert complexity_info['params'] == params
|
||||
|
||||
complexity_info = get_model_complexity_info(
|
||||
model=model, input_shape=(input_shape1, input_shape2))
|
||||
inputs = (torch.randn(1, *input_shape1), torch.randn(1, *input_shape2))
|
||||
flops = FlopAnalyzer(model=model, inputs=inputs).total()
|
||||
assert complexity_info['flops'] == flops
|
||||
|
||||
# test a network that accepts one tensor and one scalar as input
|
||||
model = NetAcceptOneTensorAndOneScalar()
|
||||
# For pytorch<1.9, a scalar input is not acceptable for torch.jit,
|
||||
# wrap it to `torch.tensor`. See https://github.com/pytorch/pytorch/blob/cd9dd653e98534b5d3a9f2576df2feda40916f1d/torch/csrc/jit/python/python_arg_flatten.cpp#L90. # noqa: E501
|
||||
scalar = torch.tensor([
|
||||
scalar
|
||||
]) if digit_version(TORCH_VERSION) < digit_version('1.9.0') else scalar
|
||||
complexity_info = get_model_complexity_info(
|
||||
model=model, inputs=(input1, scalar))
|
||||
flops = FlopAnalyzer(model=model, inputs=(input1, scalar)).total()
|
||||
params = parameter_count(model=model)['']
|
||||
assert complexity_info['flops'] == flops
|
||||
assert complexity_info['params'] == params
|
||||
|
||||
# `get_model_complexity_info()` should throw `ValueError`
|
||||
# when neithor `inputs` nor `input_shape` is specified
|
||||
with pytest.raises(ValueError, match='should be set'):
|
||||
get_model_complexity_info(model)
|
||||
|
||||
# `get_model_complexity_info()` should throw `ValueError`
|
||||
# when both `inputs` and `input_shape` are specified
|
||||
model = NetAcceptOneTensor()
|
||||
with pytest.raises(ValueError, match='cannot be both set'):
|
||||
get_model_complexity_info(
|
||||
model, inputs=input1, input_shape=input_shape1)
|
Loading…
x
Reference in New Issue
Block a user