# Visualize Training Logs MMEngine integrates experiment management tools such as [TensorBoard](https://www.tensorflow.org/tensorboard), [Weights & Biases (WandB)](https://docs.wandb.ai/), [MLflow](https://mlflow.org/docs/latest/index.html) and [ClearML](https://clear.ml/docs/latest/docs), making it easy to track and visualize metrics like loss and accuracy. Below, we'll show you how to configure an experiment management tool in just one line, based on the example from [15 minutes to get started with MMEngine](../get_started/15_minutes.md). ## TensorBoard Configure the `visualizer` in the initialization parameters of the Runner, and set `vis_backends` to `TensorboardVisBackend`. ```python runner = Runner( model=MMResNet50(), work_dir='./work_dir', train_dataloader=train_dataloader, optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)), train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1), val_dataloader=val_dataloader, val_cfg=dict(), val_evaluator=dict(type=Accuracy), visualizer=dict(type='Visualizer', vis_backends=[dict(type='TensorboardVisBackend')]), ) runner.train() ``` ## WandB Before using WandB, you need to install the `wandb` dependency library and log in to WandB. ```bash pip install wandb wandb login ``` Configure the `visualizer` in the initialization parameters of the Runner, and set `vis_backends` to `WandbVisBackend`. ```python runner = Runner( model=MMResNet50(), work_dir='./work_dir', train_dataloader=train_dataloader, optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)), train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1), val_dataloader=val_dataloader, val_cfg=dict(), val_evaluator=dict(type=Accuracy), visualizer=dict(type='Visualizer', vis_backends=[dict(type='WandbVisBackend')]), ) runner.train() ``` ![image](https://user-images.githubusercontent.com/58739961/217226120-0c45267c-c45f-4fce-bdd5-a99c8c393006.png) You can click on [WandbVisBackend API](mmengine.visualization.WandbVisBackend) to view the configurable parameters for `WandbVisBackend`. For example, the `init_kwargs` parameter will be passed to the [wandb.init](https://docs.wandb.ai/ref/python/init) method. ```python runner = Runner( ... visualizer=dict( type='Visualizer', vis_backends=[ dict( type='WandbVisBackend', init_kwargs=dict(project='toy-example') ), ], ), ... ) runner.train() ``` ## MLflow (WIP) ## ClearML Before using ClearML, you need to install the `clearml` dependency library and refer to [Connect ClearML SDK to the Server](https://clear.ml/docs/latest/docs/getting_started/ds/ds_first_steps#connect-clearml-sdk-to-the-server) for configuration. ```bash pip install clearml clearml-init ``` Configure the `visualizer` in the initialization parameters of the Runner, and set `vis_backends` to `ClearMLVisBackend`. ```python runner = Runner( model=MMResNet50(), work_dir='./work_dir', train_dataloader=train_dataloader, optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)), train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1), val_dataloader=val_dataloader, val_cfg=dict(), val_evaluator=dict(type=Accuracy), visualizer=dict(type='Visualizer', vis_backends=[dict(type='ClearMLVisBackend')]), ) runner.train() ``` ![image](https://github.com/open-mmlab/mmengine/assets/58739961/d68e1dd2-9e82-40fb-ad81-00a647549adc)