# 调试技巧 ## 设置数据集的长度 在调试代码的过程中,有时需要训练几个 epoch,例如调试验证过程或者权重的保存是否符合期望。然而如果数据集太大,需要花费较长时间才能训完一个 epoch,这种情况下可以设置数据集的长度。注意,只有继承自 [BaseDataset](mmengine.dataset.BaseDataset) 的 Dataset 才支持这个功能,`BaseDataset` 的用法可阅读 [数据集基类(BASEDATASET)](../advanced_tutorials/basedataset.md)。 以 `MMClassification` 为例(参考[文档](https://mmclassification.readthedocs.io/zh_CN/dev-1.x/get_started.html#id2)安装 MMClassification)。 启动训练命令 ```bash python tools/train.py configs/resnet/resnet18_8xb16_cifar10.py ``` 下面是训练的部分日志,其中 `3125` 表示需要迭代的次数。 ``` 02/20 14:43:11 - mmengine - INFO - Epoch(train) [1][ 100/3125] lr: 1.0000e-01 eta: 6:12:01 time: 0.0149 data_time: 0.0003 memory: 214 loss: 2.0611 02/20 14:43:13 - mmengine - INFO - Epoch(train) [1][ 200/3125] lr: 1.0000e-01 eta: 4:23:08 time: 0.0154 data_time: 0.0003 memory: 214 loss: 2.0963 02/20 14:43:14 - mmengine - INFO - Epoch(train) [1][ 300/3125] lr: 1.0000e-01 eta: 3:46:27 time: 0.0146 data_time: 0.0003 memory: 214 loss: 1.9858 ``` 关掉训练,然后修改 [configs/_base_/datasets/cifar10_bs16.py](https://github.com/open-mmlab/mmclassification/blob/dev-1.x/configs/_base_/datasets/cifar10_bs16.py) 中的 `dataset` 字段,设置 `indices=5000`。 ```python train_dataloader = dict( batch_size=16, num_workers=2, dataset=dict( type=dataset_type, data_prefix='data/cifar10', test_mode=False, indices=5000, # 设置 indices=5000,表示每个 epoch 只迭代 5000 个样本 pipeline=train_pipeline), sampler=dict(type='DefaultSampler', shuffle=True), ) ``` 重新启动训练 ```bash python tools/train.py configs/resnet/resnet18_8xb16_cifar10.py ``` 可以看到,迭代次数变成了 `313`,相比原先,这样能够更快跑完一个 epoch。 ``` 02/20 14:44:58 - mmengine - INFO - Epoch(train) [1][100/313] lr: 1.0000e-01 eta: 0:31:09 time: 0.0154 data_time: 0.0004 memory: 214 loss: 2.1852 02/20 14:44:59 - mmengine - INFO - Epoch(train) [1][200/313] lr: 1.0000e-01 eta: 0:23:18 time: 0.0143 data_time: 0.0002 memory: 214 loss: 2.0424 02/20 14:45:01 - mmengine - INFO - Epoch(train) [1][300/313] lr: 1.0000e-01 eta: 0:20:39 time: 0.0143 data_time: 0.0003 memory: 214 loss: 1.814 ```