# 训练生成对抗网络 生成对抗网络(Generative Adversarial Network, GAN)可以用来生成图像视频等数据。这篇教程将带你一步步用 MMEngine 训练 GAN ! 我们可以通过以下步骤来训练一个生成对抗网络。 - [训练生成对抗网络](#训练生成对抗网络) - [构建数据加载器](#构建数据加载器) - [构建数据集](#构建数据集) - [构建生成器网络和判别器网络](#构建生成器网络和判别器网络) - [构建一个生成对抗网络模型](#构建一个生成对抗网络模型) - [构建优化器](#构建优化器) - [使用执行器进行训练](#使用执行器进行训练) ## 构建数据加载器 ### 构建数据集 接下来, 我们为 MNIST 数据集构建一个数据集类 `MNISTDataset`, 继承自数据集基类 [BaseDataset](mmengine.dataset.BaseDataset), 并且重载数据集基类的 `load_data_list` 函数, 保证返回值为 `list[dict]`,其中每个 `dict` 代表一个数据样本。更多关于 MMEngine 中数据集的用法,可以参考[数据集教程](../tutorials/basedataset.md)。 ```python import numpy as np from mmcv.transforms import to_tensor from torch.utils.data import random_split from torchvision.datasets import MNIST from mmengine.dataset import BaseDataset class MNISTDataset(BaseDataset): def __init__(self, data_root, pipeline, test_mode=False): # 下载 MNIST 数据集 if test_mode: mnist_full = MNIST(data_root, train=True, download=True) self.mnist_dataset, _ = random_split(mnist_full, [55000, 5000]) else: self.mnist_dataset = MNIST(data_root, train=False, download=True) super().__init__( data_root=data_root, pipeline=pipeline, test_mode=test_mode) @staticmethod def totensor(img): if len(img.shape) < 3: img = np.expand_dims(img, -1) img = np.ascontiguousarray(img.transpose(2, 0, 1)) return to_tensor(img) def load_data_list(self): return [ dict(inputs=self.totensor(np.array(x[0]))) for x in self.mnist_dataset ] dataset = MNISTDataset("./data", []) ``` 使用 Runner 中的函数 build_dataloader 来构建数据加载器。 ```python import os import torch from mmengine.runner import Runner NUM_WORKERS = int(os.cpu_count() / 2) BATCH_SIZE = 256 if torch.cuda.is_available() else 64 train_dataloader = dict( batch_size=BATCH_SIZE, num_workers=NUM_WORKERS, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=dataset) train_dataloader = Runner.build_dataloader(train_dataloader) ``` ## 构建生成器网络和判别器网络 下面的代码构建并实例化了一个生成器(Generator)和一个判别器(Discriminator)。 ```python import torch.nn as nn class Generator(nn.Module): def __init__(self, noise_size, img_shape): super().__init__() self.img_shape = img_shape self.noise_size = noise_size def block(in_feat, out_feat, normalize=True): layers = [nn.Linear(in_feat, out_feat)] if normalize: layers.append(nn.BatchNorm1d(out_feat, 0.8)) layers.append(nn.LeakyReLU(0.2, inplace=True)) return layers self.model = nn.Sequential( *block(noise_size, 128, normalize=False), *block(128, 256), *block(256, 512), *block(512, 1024), nn.Linear(1024, int(np.prod(img_shape))), nn.Tanh(), ) def forward(self, z): img = self.model(z) img = img.view(img.size(0), *self.img_shape) return img ``` ```python class Discriminator(nn.Module): def __init__(self, img_shape): super().__init__() self.model = nn.Sequential( nn.Linear(int(np.prod(img_shape)), 512), nn.LeakyReLU(0.2, inplace=True), nn.Linear(512, 256), nn.LeakyReLU(0.2, inplace=True), nn.Linear(256, 1), nn.Sigmoid(), ) def forward(self, img): img_flat = img.view(img.size(0), -1) validity = self.model(img_flat) return validity ``` ```python generator = Generator(100, (1, 28, 28)) discriminator = Discriminator((1, 28, 28)) ``` ## 构建一个生成对抗网络模型 在使用 MMEngine 时,我们用 [ImgDataPreprocessor](mmengine.model.ImgDataPreprocessor) 来对数据进行归一化和颜色通道的转换。 ```python from mmengine.model import ImgDataPreprocessor data_preprocessor = ImgDataPreprocessor(mean=([127.5]), std=([127.5])) ``` 下面的代码实现了基础 GAN 的算法。使用 MMEngine 实现算法类,需要继承 [BaseModel](mmengine.model.BaseModel) 基类,在 train_step 中实现训练过程。GAN 需要交替训练生成器和判别器,分别由 train_discriminator 和 train_generator 实现,并实现 disc_loss 和 gen_loss 计算判别器损失函数和生成器损失函数。 关于 BaseModel 的更多信息,请参考[模型教程](../tutorials/model.md). ```python import torch.nn.functional as F from mmengine.model import BaseModel class GAN(BaseModel): def __init__(self, generator, discriminator, noise_size, data_preprocessor): super().__init__(data_preprocessor=data_preprocessor) assert generator.noise_size == noise_size self.generator = generator self.discriminator = discriminator self.noise_size = noise_size def train_step(self, data, optim_wrapper): # 获取数据和数据预处理 inputs_dict = self.data_preprocessor(data, True) # 训练判别器 disc_optimizer_wrapper = optim_wrapper['discriminator'] with disc_optimizer_wrapper.optim_context(self.discriminator): log_vars = self.train_discriminator(inputs_dict, disc_optimizer_wrapper) # 训练生成器 set_requires_grad(self.discriminator, False) gen_optimizer_wrapper = optim_wrapper['generator'] with gen_optimizer_wrapper.optim_context(self.generator): log_vars_gen = self.train_generator(inputs_dict, gen_optimizer_wrapper) set_requires_grad(self.discriminator, True) log_vars.update(log_vars_gen) return log_vars def forward(self, batch_inputs, data_samples=None, mode=None): return self.generator(batch_inputs) def disc_loss(self, disc_pred_fake, disc_pred_real): losses_dict = dict() losses_dict['loss_disc_fake'] = F.binary_cross_entropy( disc_pred_fake, 0. * torch.ones_like(disc_pred_fake)) losses_dict['loss_disc_real'] = F.binary_cross_entropy( disc_pred_real, 1. * torch.ones_like(disc_pred_real)) loss, log_var = self.parse_losses(losses_dict) return loss, log_var def gen_loss(self, disc_pred_fake): losses_dict = dict() losses_dict['loss_gen'] = F.binary_cross_entropy( disc_pred_fake, 1. * torch.ones_like(disc_pred_fake)) loss, log_var = self.parse_losses(losses_dict) return loss, log_var def train_discriminator(self, inputs, optimizer_wrapper): real_imgs = inputs['inputs'] z = torch.randn( (real_imgs.shape[0], self.noise_size)).type_as(real_imgs) with torch.no_grad(): fake_imgs = self.generator(z) disc_pred_fake = self.discriminator(fake_imgs) disc_pred_real = self.discriminator(real_imgs) parsed_losses, log_vars = self.disc_loss(disc_pred_fake, disc_pred_real) optimizer_wrapper.update_params(parsed_losses) return log_vars def train_generator(self, inputs, optimizer_wrapper): real_imgs = inputs['inputs'] z = torch.randn(real_imgs.shape[0], self.noise_size).type_as(real_imgs) fake_imgs = self.generator(z) disc_pred_fake = self.discriminator(fake_imgs) parsed_loss, log_vars = self.gen_loss(disc_pred_fake) optimizer_wrapper.update_params(parsed_loss) return log_vars ``` 其中一个函数 set_requires_grad 用来锁定训练生成器时判别器的权重。 ```python def set_requires_grad(nets, requires_grad=False): """Set requires_grad for all the networks. Args: nets (nn.Module | list[nn.Module]): A list of networks or a single network. requires_grad (bool): Whether the networks require gradients or not. """ if not isinstance(nets, list): nets = [nets] for net in nets: if net is not None: for param in net.parameters(): param.requires_grad = requires_grad ``` ```python model = GAN(generator, discriminator, 100, data_preprocessor) ``` ## 构建优化器 MMEngine 使用 [OptimWrapper](mmengine.optim.OptimWrapper) 来封装优化器,对于多个优化器的情况,使用 [OptimWrapperDict](mmengine.optim.OptimWrapperDict) 对 OptimWrapper 再进行一次封装。 关于优化器的更多信息,请参考[优化器教程](../tutorials/optimizer.md). ```python from mmengine.optim import OptimWrapper, OptimWrapperDict opt_g = torch.optim.Adam(generator.parameters(), lr=0.0001, betas=(0.5, 0.999)) opt_g_wrapper = OptimWrapper(opt_g) opt_d = torch.optim.Adam( discriminator.parameters(), lr=0.0001, betas=(0.5, 0.999)) opt_d_wrapper = OptimWrapper(opt_d) opt_wrapper_dict = OptimWrapperDict( generator=opt_g_wrapper, discriminator=opt_d_wrapper) ``` ## 使用执行器进行训练 下面的代码演示了如何使用 Runner 进行模型训练。关于 Runner 的更多信息,请参考[执行器教程](../tutorials/runner.md)。 ```python train_cfg = dict(by_epoch=True, max_epochs=220) runner = Runner( model, work_dir='runs/gan/', train_dataloader=train_dataloader, train_cfg=train_cfg, optim_wrapper=opt_wrapper_dict) runner.train() ``` 到这里,我们就完成了一个 GAN 的训练,通过下面的代码可以查看刚才训练的 GAN 生成的结果。 ```python z = torch.randn(64, 100).cuda() img = model(z) from torchvision.utils import save_image save_image(img, "result.png", normalize=True) ``` ![GAN生成图像](https://user-images.githubusercontent.com/22982797/186811532-1517a0f7-5452-4a39-b6d0-6c685e4545e2.png) 如果你想了解更多如何使用 MMEngine 实现 GAN 和生成模型,我们强烈建议你使用同样基于 MMEngine 开发的生成框架 [MMGen](https://github.com/open-mmlab/mmgeneration/tree/dev-1.x)。