# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional from unittest import TestCase import matplotlib.pyplot as plt import numpy as np import pytest import torch from mmengine.data import BaseDataElement from mmengine.visualization import Visualizer class TestVisualizer(TestCase): def setUp(self): """Setup the demo image in every test method. TestCase calls functions in this order: setUp() -> testMethod() -> tearDown() -> cleanUp() """ self.image = np.random.randint( 0, 256, size=(10, 10, 3)).astype('uint8') def test_init(self): visualizer = Visualizer(image=self.image) visualizer.get_image() def test_set_image(self): visualizer = Visualizer() visualizer.set_image(self.image) with pytest.raises(AssertionError): visualizer.set_image(None) def test_get_image(self): visualizer = Visualizer(image=self.image) visualizer.get_image() def test_draw_bboxes(self): visualizer = Visualizer(image=self.image) # only support 4 or nx4 tensor and numpy visualizer.draw_bboxes(torch.tensor([1, 1, 2, 2])) # valid bbox visualizer.draw_bboxes(torch.tensor([1, 1, 1, 2])) bboxes = torch.tensor([[1, 1, 2, 2], [1, 2, 2, 2.5]]) visualizer.draw_bboxes( bboxes, alpha=0.5, edgecolors='b', linestyles='-') bboxes = bboxes.numpy() visualizer.draw_bboxes(bboxes) # test invalid bbox with pytest.raises(AssertionError): # x1 > x2 visualizer.draw_bboxes(torch.tensor([5, 1, 2, 2])) # test out of bounds with pytest.warns( UserWarning, match='Warning: The bbox is out of bounds,' ' the drawn bbox may not be in the image'): visualizer.draw_bboxes(torch.tensor([1, 1, 20, 2])) # test incorrect bbox format with pytest.raises(TypeError): visualizer.draw_bboxes([1, 1, 2, 2]) def test_close(self): visualizer = Visualizer(image=self.image) fig_num = visualizer.fig.number assert fig_num in plt.get_fignums() visualizer.close() assert fig_num not in plt.get_fignums() def test_draw_texts(self): visualizer = Visualizer(image=self.image) # only support tensor and numpy visualizer.draw_texts('text1', positions=torch.tensor([5, 5])) visualizer.draw_texts(['text1', 'text2'], positions=torch.tensor([[5, 5], [3, 3]])) visualizer.draw_texts('text1', positions=np.array([5, 5])) visualizer.draw_texts(['text1', 'text2'], positions=np.array([[5, 5], [3, 3]])) visualizer.draw_texts( 'text1', positions=torch.tensor([5, 5]), bboxes=dict(facecolor='r', alpha=0.6)) # test out of bounds with pytest.warns( UserWarning, match='Warning: The text is out of bounds,' ' the drawn text may not be in the image'): visualizer.draw_texts('text1', positions=torch.tensor([15, 5])) # test incorrect format with pytest.raises(TypeError): visualizer.draw_texts('text', positions=[5, 5]) # test length mismatch with pytest.raises(AssertionError): visualizer.draw_texts(['text1', 'text2'], positions=torch.tensor([5, 5])) with pytest.raises(AssertionError): visualizer.draw_texts( 'text1', positions=torch.tensor([[5, 5], [3, 3]])) with pytest.raises(AssertionError): visualizer.draw_texts(['text1', 'test2'], positions=torch.tensor([[5, 5], [3, 3]]), colors=['r']) with pytest.raises(AssertionError): visualizer.draw_texts(['text1', 'test2'], positions=torch.tensor([[5, 5], [3, 3]]), verticalalignments=['top']) with pytest.raises(AssertionError): visualizer.draw_texts(['text1', 'test2'], positions=torch.tensor([[5, 5], [3, 3]]), horizontalalignments=['left']) with pytest.raises(AssertionError): visualizer.draw_texts(['text1', 'test2'], positions=torch.tensor([[5, 5], [3, 3]]), font_sizes=[1]) # test type valid with pytest.raises(TypeError): visualizer.draw_texts(['text1', 'test2'], positions=torch.tensor([[5, 5], [3, 3]]), font_sizes='b') def test_draw_lines(self): visualizer = Visualizer(image=self.image) # only support tensor and numpy visualizer.draw_lines( x_datas=torch.tensor([1, 5]), y_datas=torch.tensor([2, 6])) visualizer.draw_lines( x_datas=np.array([[1, 5], [2, 4]]), y_datas=np.array([[2, 6], [4, 7]])) visualizer.draw_lines( x_datas=np.array([[1, 5], [2, 4]]), y_datas=np.array([[2, 6], [4, 7]]), colors='r', linestyles=['-', '-.'], linewidths=[1, 2]) # test out of bounds with pytest.warns( UserWarning, match='Warning: The line is out of bounds,' ' the drawn line may not be in the image'): visualizer.draw_lines( x_datas=torch.tensor([12, 5]), y_datas=torch.tensor([2, 6])) # test incorrect format with pytest.raises(TypeError): visualizer.draw_lines(x_datas=[5, 5], y_datas=torch.tensor([2, 6])) with pytest.raises(TypeError): visualizer.draw_lines(y_datas=[5, 5], x_datas=torch.tensor([2, 6])) # test length mismatch with pytest.raises(AssertionError): visualizer.draw_lines( x_datas=torch.tensor([1, 5]), y_datas=torch.tensor([[2, 6], [4, 7]])) def test_draw_circles(self): visualizer = Visualizer(image=self.image) # only support tensor and numpy visualizer.draw_circles(torch.tensor([1, 5]), torch.tensor([1])) visualizer.draw_circles(np.array([1, 5]), np.array([1])) visualizer.draw_circles( torch.tensor([[1, 5], [2, 6]]), radius=torch.tensor([1, 2])) # test filling visualizer.draw_circles( torch.tensor([[1, 5], [2, 6]]), radius=torch.tensor([1, 2]), is_filling=True) # test config visualizer.draw_circles( torch.tensor([[1, 5], [2, 6]]), radius=torch.tensor([1, 2]), edgecolors=['g', 'r'], linestyles=['-', '-.'], linewidths=[1, 2]) # test out of bounds with pytest.warns( UserWarning, match='Warning: The circle is out of bounds,' ' the drawn circle may not be in the image'): visualizer.draw_circles( torch.tensor([12, 5]), radius=torch.tensor([1])) visualizer.draw_circles( torch.tensor([1, 5]), radius=torch.tensor([10])) # test incorrect format with pytest.raises(TypeError): visualizer.draw_circles([1, 5], radius=torch.tensor([1])) with pytest.raises(TypeError): visualizer.draw_circles(np.array([1, 5]), radius=10) # test length mismatch with pytest.raises(AssertionError): visualizer.draw_circles( torch.tensor([[1, 5]]), radius=torch.tensor([1, 2])) def test_draw_polygons(self): visualizer = Visualizer(image=self.image) # shape Nx2 or list[Nx2] visualizer.draw_polygons(torch.tensor([[1, 1], [2, 2], [3, 4]])) visualizer.draw_polygons(np.array([[1, 1], [2, 2], [3, 4]])) visualizer.draw_polygons([ np.array([[1, 1], [2, 2], [3, 4]]), torch.tensor([[1, 1], [2, 2], [3, 4]]) ]) visualizer.draw_polygons( polygons=[ np.array([[1, 1], [2, 2], [3, 4]]), torch.tensor([[1, 1], [2, 2], [3, 4]]) ], is_filling=True) visualizer.draw_polygons( polygons=[ np.array([[1, 1], [2, 2], [3, 4]]), torch.tensor([[1, 1], [2, 2], [3, 4]]) ], edgecolors=['r', 'g'], linestyles='-', linewidths=[2, 1]) # test out of bounds with pytest.warns( UserWarning, match='Warning: The polygon is out of bounds,' ' the drawn polygon may not be in the image'): visualizer.draw_polygons(torch.tensor([[1, 1], [2, 2], [16, 4]])) def test_draw_binary_masks(self): binary_mask = np.random.randint(0, 2, size=(10, 10)).astype(np.bool) visualizer = Visualizer(image=self.image) visualizer.draw_binary_masks(binary_mask) visualizer.draw_binary_masks(torch.from_numpy(binary_mask)) # test the error that the size of mask and image are different. with pytest.raises(AssertionError): binary_mask = np.random.randint(0, 2, size=(8, 10)).astype(np.bool) visualizer.draw_binary_masks(binary_mask) # test non binary mask error binary_mask = np.random.randint(0, 2, size=(10, 10, 3)).astype(np.bool) with pytest.raises(AssertionError): visualizer.draw_binary_masks(binary_mask) # test color dim with pytest.raises(AssertionError): visualizer.draw_binary_masks( binary_mask, colors=np.array([1, 22, 4, 45])) binary_mask = np.random.randint(0, 2, size=(10, 10)) with pytest.raises(AssertionError): visualizer.draw_binary_masks(binary_mask) def test_draw_featmap(self): visualizer = Visualizer() image = np.random.randint(0, 256, size=(3, 3, 3), dtype='uint8') # test tensor format with pytest.raises(AssertionError, match='Input dimension must be 3'): visualizer.draw_featmap(torch.randn(1, 1, 3, 3)) # test mode parameter # mode only supports 'mean' and 'max' and 'min with pytest.raises(AssertionError): visualizer.draw_featmap(torch.randn(2, 3, 3), mode='xx') # test tensor_chw and img have difference height and width with pytest.raises(AssertionError): visualizer.draw_featmap(torch.randn(2, 3, 3), mode='xx') # test topk parameter with pytest.raises( AssertionError, match='The input tensor channel dimension must be 1 or 3 ' 'when topk is less than 1, but the channel ' 'dimension you input is 6, you can use the ' 'mode parameter or set topk greater than 0 to solve ' 'the error'): visualizer.draw_featmap(torch.randn(6, 3, 3), mode=None, topk=0) visualizer.draw_featmap(torch.randn(6, 3, 3), mode='mean') visualizer.draw_featmap(torch.randn(1, 3, 3), mode='mean') visualizer.draw_featmap(torch.randn(6, 3, 3), mode='max') visualizer.draw_featmap(torch.randn(6, 3, 3), mode='min') visualizer.draw_featmap(torch.randn(6, 3, 3), mode='max', topk=10) visualizer.draw_featmap(torch.randn(1, 3, 3), mode=None, topk=-1) visualizer.draw_featmap( torch.randn(3, 3, 3), image=image, mode=None, topk=-1) visualizer.draw_featmap(torch.randn(6, 3, 3), mode=None, topk=4) visualizer.draw_featmap( torch.randn(6, 3, 3), image=image, mode=None, topk=8) # test gray visualizer.draw_featmap( torch.randn(6, 3, 3), image=np.random.randint(0, 256, size=(3, 3), dtype='uint8'), mode=None, topk=8) # test arrangement with pytest.raises(AssertionError): visualizer.draw_featmap( torch.randn(10, 3, 3), image=image, mode=None, topk=8, arrangement=(2, 2)) def test_chain_call(self): visualizer = Visualizer(image=self.image) binary_mask = np.random.randint(0, 2, size=(10, 10)).astype(np.bool) visualizer.draw_bboxes(torch.tensor([1, 1, 2, 2])). \ draw_texts('test', torch.tensor([5, 5])). \ draw_lines(x_datas=torch.tensor([1, 5]), y_datas=torch.tensor([2, 6])). \ draw_circles(torch.tensor([1, 5]), radius=torch.tensor([2])). \ draw_polygons(torch.tensor([[1, 1], [2, 2], [3, 4]])). \ draw_binary_masks(binary_mask) def test_register_task(self): class DetVisualizer(Visualizer): @Visualizer.register_task('instances') def draw_instance(self, instances, data_type): pass assert len(Visualizer.task_dict) == 1 assert 'instances' in Visualizer.task_dict # test registration of the same names. with pytest.raises( KeyError, match=('"instances" is already registered in task_dict, ' 'add "force=True" if you want to override it')): class DetVisualizer1(Visualizer): @Visualizer.register_task('instances') def draw_instance1(self, instances, data_type): pass @Visualizer.register_task('instances') def draw_instance2(self, instances, data_type): pass Visualizer.task_dict = dict() class DetVisualizer2(Visualizer): @Visualizer.register_task('instances') def draw_instance1(self, instances, data_type): pass @Visualizer.register_task('instances', force=True) def draw_instance2(self, instances, data_type): pass def draw(self, image: Optional[np.ndarray] = None, gt_sample: Optional['BaseDataElement'] = None, pred_sample: Optional['BaseDataElement'] = None, draw_gt: bool = True, draw_pred: bool = True) -> None: return super().draw(image, gt_sample, pred_sample, draw_gt, draw_pred) det_visualizer = DetVisualizer2() det_visualizer.draw(gt_sample={}, pred_sample={}) assert len(det_visualizer.task_dict) == 1 assert 'instances' in det_visualizer.task_dict assert det_visualizer.task_dict[ 'instances'].__name__ == 'draw_instance2'