{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Train a Segmentation Model\n",
    "\n",
    "This segmentation task example will be divided into the following steps:\n",
    "\n",
    "- [Download Camvid Dataset](#download-camvid-dataset)\n",
    "- [Implement Camvid Dataset](#implement-the-camvid-dataset)\n",
    "- [Implement a Segmentation Model](#implement-the-segmentation-model)\n",
    "- [Train with Runner](#training-with-runner)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Download Camvid Dataset\n",
    "\n",
    "First, you should download the Camvid dataset from OpenDataLab:\n",
    "\n",
    "```bash\n",
    "# https://opendatalab.com/CamVid\n",
    "# Configure install\n",
    "pip install opendatalab\n",
    "# Upgraded version\n",
    "pip install -U opendatalab\n",
    "# Login\n",
    "odl login\n",
    "# Download this dataset\n",
    "mkdir data\n",
    "odl get CamVid -d data\n",
    "# Preprocess data in Linux. You should extract the files to data manually in\n",
    "# Windows\n",
    "tar -xzvf data/CamVid/raw/CamVid.tar.gz.00 -C ./data\n",
    "```"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Implement the Camvid Dataset\n",
    "\n",
    "We have implemented the CamVid class here, which inherits from VisionDataset. Within this class, we have overridden the `__getitem__` and `__len__` methods to ensure that each index returns a dict of images and labels. Additionally, we have implemented the color_to_class dictionary to map the mask's color to the class index.\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import numpy as np\n",
    "from torchvision.datasets import VisionDataset\n",
    "from PIL import Image\n",
    "import csv\n",
    "\n",
    "\n",
    "def create_palette(csv_filepath):\n",
    "    color_to_class = {}\n",
    "    with open(csv_filepath, newline='') as csvfile:\n",
    "        reader = csv.DictReader(csvfile)\n",
    "        for idx, row in enumerate(reader):\n",
    "            r, g, b = int(row['r']), int(row['g']), int(row['b'])\n",
    "            color_to_class[(r, g, b)] = idx\n",
    "    return color_to_class\n",
    "\n",
    "class CamVid(VisionDataset):\n",
    "\n",
    "    def __init__(self,\n",
    "                 root,\n",
    "                 img_folder,\n",
    "                 mask_folder,\n",
    "                 transform=None,\n",
    "                 target_transform=None):\n",
    "        super().__init__(\n",
    "            root, transform=transform, target_transform=target_transform)\n",
    "        self.img_folder = img_folder\n",
    "        self.mask_folder = mask_folder\n",
    "        self.images = list(\n",
    "            sorted(os.listdir(os.path.join(self.root, img_folder))))\n",
    "        self.masks = list(\n",
    "            sorted(os.listdir(os.path.join(self.root, mask_folder))))\n",
    "        self.color_to_class = create_palette(\n",
    "            os.path.join(self.root, 'class_dict.csv'))\n",
    "\n",
    "    def __getitem__(self, index):\n",
    "        img_path = os.path.join(self.root, self.img_folder, self.images[index])\n",
    "        mask_path = os.path.join(self.root, self.mask_folder,\n",
    "                                 self.masks[index])\n",
    "\n",
    "        img = Image.open(img_path).convert('RGB')\n",
    "        mask = Image.open(mask_path).convert('RGB')  # Convert to RGB\n",
    "\n",
    "        if self.transform is not None:\n",
    "            img = self.transform(img)\n",
    "\n",
    "        # Convert the RGB values to class indices\n",
    "        mask = np.array(mask)\n",
    "        mask = mask[:, :, 0] * 65536 + mask[:, :, 1] * 256 + mask[:, :, 2]\n",
    "        labels = np.zeros_like(mask, dtype=np.int64)\n",
    "        for color, class_index in self.color_to_class.items():\n",
    "            rgb = color[0] * 65536 + color[1] * 256 + color[2]\n",
    "            labels[mask == rgb] = class_index\n",
    "\n",
    "        if self.target_transform is not None:\n",
    "            labels = self.target_transform(labels)\n",
    "        data_samples = dict(\n",
    "            labels=labels, img_path=img_path, mask_path=mask_path)\n",
    "        return img, data_samples\n",
    "\n",
    "    def __len__(self):\n",
    "        return len(self.images)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We utilize the Camvid dataset to create the `train_dataloader` and `val_dataloader`, which serve as the data loaders for training and validation in the subsequent Runner."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "import torchvision.transforms as transforms\n",
    "\n",
    "norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n",
    "transform = transforms.Compose(\n",
    "            [transforms.ToTensor(),\n",
    "             transforms.Normalize(**norm_cfg)])\n",
    "\n",
    "target_transform = transforms.Lambda(\n",
    "        lambda x: torch.tensor(np.array(x), dtype=torch.long))\n",
    "\n",
    "train_set = CamVid(\n",
    "    'data/CamVid',\n",
    "    img_folder='train',\n",
    "    mask_folder='train_labels',\n",
    "    transform=transform,\n",
    "    target_transform=target_transform)\n",
    "\n",
    "valid_set = CamVid(\n",
    "    'data/CamVid',\n",
    "    img_folder='val',\n",
    "    mask_folder='val_labels',\n",
    "    transform=transform,\n",
    "    target_transform=target_transform)\n",
    "\n",
    "train_dataloader = dict(\n",
    "    batch_size=3,\n",
    "    dataset=train_set,\n",
    "    sampler=dict(type='DefaultSampler', shuffle=True),\n",
    "    collate_fn=dict(type='default_collate'))\n",
    "\n",
    "val_dataloader = dict(\n",
    "    batch_size=3,\n",
    "    dataset=valid_set,\n",
    "    sampler=dict(type='DefaultSampler', shuffle=False),\n",
    "    collate_fn=dict(type='default_collate'))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Implement the Segmentation Model\n",
    "\n",
    "The provided code defines a model class named `MMDeeplabV3`. This class is derived from `BaseModel` and incorporates the segmentation model of the DeepLabV3 architecture. It overrides the `forward` method to handle both input images and labels and supports computing losses and returning predictions in both training and prediction modes.\n",
    "\n",
    "For additional information about `BaseModel`, you can refer to the [Model tutorial](../tutorials/model.md)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from mmengine.model import BaseModel\n",
    "from torchvision.models.segmentation import deeplabv3_resnet50\n",
    "import torch.nn.functional as F\n",
    "\n",
    "\n",
    "class MMDeeplabV3(BaseModel):\n",
    "\n",
    "    def __init__(self, num_classes):\n",
    "        super().__init__()\n",
    "        self.deeplab = deeplabv3_resnet50(num_classes=num_classes)\n",
    "\n",
    "    def forward(self, imgs, data_samples=None, mode='tensor'):\n",
    "        x = self.deeplab(imgs)['out']\n",
    "        if mode == 'loss':\n",
    "            return {'loss': F.cross_entropy(x, data_samples['labels'])}\n",
    "        elif mode == 'predict':\n",
    "            return x, data_samples"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Training with Runner\n",
    "\n",
    "Before training with the Runner, we need to implement the IoU (Intersection over Union) metric to evaluate the model's performance."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from mmengine.evaluator import BaseMetric\n",
    "\n",
    "class IoU(BaseMetric):\n",
    "\n",
    "    def process(self, data_batch, data_samples):\n",
    "        preds, labels = data_samples[0], data_samples[1]['labels']\n",
    "        preds = torch.argmax(preds, dim=1)\n",
    "        intersect = (labels == preds).sum()\n",
    "        union = (torch.logical_or(preds, labels)).sum()\n",
    "        iou = (intersect / union).cpu()\n",
    "        self.results.append(\n",
    "            dict(batch_size=len(labels), iou=iou * len(labels)))\n",
    "\n",
    "    def compute_metrics(self, results):\n",
    "        total_iou = sum(result['iou'] for result in self.results)\n",
    "        num_samples = sum(result['batch_size'] for result in self.results)\n",
    "        return dict(iou=total_iou / num_samples)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Implementing a visualization hook is also important to facilitate easier comparison between predictions and labels."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from mmengine.hooks import Hook\n",
    "import shutil\n",
    "import cv2\n",
    "import os.path as osp\n",
    "\n",
    "\n",
    "class SegVisHook(Hook):\n",
    "\n",
    "    def __init__(self, data_root, vis_num=1) -> None:\n",
    "        super().__init__()\n",
    "        self.vis_num = vis_num\n",
    "        self.palette = create_palette(osp.join(data_root, 'class_dict.csv'))\n",
    "\n",
    "    def after_val_iter(self,\n",
    "                       runner,\n",
    "                       batch_idx: int,\n",
    "                       data_batch=None,\n",
    "                       outputs=None) -> None:\n",
    "        if batch_idx > self.vis_num:\n",
    "            return\n",
    "        preds, data_samples = outputs\n",
    "        img_paths = data_samples['img_path']\n",
    "        mask_paths = data_samples['mask_path']\n",
    "        _, C, H, W = preds.shape\n",
    "        preds = torch.argmax(preds, dim=1)\n",
    "        for idx, (pred, img_path,\n",
    "                  mask_path) in enumerate(zip(preds, img_paths, mask_paths)):\n",
    "            pred_mask = np.zeros((H, W, 3), dtype=np.uint8)\n",
    "            runner.visualizer.set_image(pred_mask)\n",
    "            for color, class_id in self.palette.items():\n",
    "                runner.visualizer.draw_binary_masks(\n",
    "                    pred == class_id,\n",
    "                    colors=[color],\n",
    "                    alphas=1.0,\n",
    "                )\n",
    "            # Convert RGB to BGR\n",
    "            pred_mask = runner.visualizer.get_image()[..., ::-1]\n",
    "            saved_dir = osp.join(runner.log_dir, 'vis_data', str(idx))\n",
    "            os.makedirs(saved_dir, exist_ok=True)\n",
    "\n",
    "            shutil.copyfile(img_path,\n",
    "                            osp.join(saved_dir, osp.basename(img_path)))\n",
    "            shutil.copyfile(mask_path,\n",
    "                            osp.join(saved_dir, osp.basename(mask_path)))\n",
    "            cv2.imwrite(\n",
    "                osp.join(saved_dir, f'pred_{osp.basename(img_path)}'),\n",
    "                pred_mask)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Finnaly, just train the model with Runner!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from torch.optim import AdamW\n",
    "from mmengine.optim import AmpOptimWrapper\n",
    "from mmengine.runner import Runner\n",
    "\n",
    "\n",
    "num_classes = 32  # Modify to actual number of categories.\n",
    "\n",
    "runner = Runner(\n",
    "    model=MMDeeplabV3(num_classes),\n",
    "    work_dir='./work_dir',\n",
    "    train_dataloader=train_dataloader,\n",
    "    optim_wrapper=dict(\n",
    "        type=AmpOptimWrapper, optimizer=dict(type=AdamW, lr=2e-4)),\n",
    "    train_cfg=dict(by_epoch=True, max_epochs=10, val_interval=10),\n",
    "    val_dataloader=val_dataloader,\n",
    "    val_cfg=dict(),\n",
    "    val_evaluator=dict(type=IoU),\n",
    "    custom_hooks=[SegVisHook('data/CamVid')],\n",
    "    default_hooks=dict(checkpoint=dict(type='CheckpointHook', interval=1)),\n",
    ")\n",
    "runner.train()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Finnaly, you can check the training results in the folder `./work_dir/{timestamp}/vis_data`.\n",
    "\n",
    "<table class=\"docutils\">\n",
    "<thead>\n",
    "<tr>\n",
    "  <th>image</th>\n",
    "  <th>prediction</th>\n",
    "  <th>label</th>\n",
    "</tr>\n",
    "<tr>\n",
    "  <th><img src=\"https://github.com/open-mmlab/mmengine/assets/57566630/de70c138-fb8e-402c-9497-574b01725b6c\" width=\"200\"></th>\n",
    "  <th><img src=\"https://github.com/open-mmlab/mmengine/assets/57566630/ea9221e7-48ca-4515-8815-56b5ff091f53\" width=\"200\"></th>\n",
    "  <th><img src=\"https://github.com/open-mmlab/mmengine/assets/57566630/dcb2324f-a2df-4e5c-a038-df896dde2471\" width=\"200\"></th>\n",
    "</tr>\n",
    "</thead>\n",
    "</table>"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "py310torch20",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.9"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}