# Migrate parameter scheduler from MMCV to MMEngine MMCV 1.x version uses [LrUpdaterHook](https://mmcv.readthedocs.io/en/v1.6.0/api.html#mmcv.runner.LrUpdaterHook) and [MomentumUpdaterHook](https://mmcv.readthedocs.io/en/v1.6.0/api.html#mmcv.runner.MomentumUpdaterHook) to adjust the learning rate and momentum. However, the design of LrUpdaterHook has been difficult to meet more abundant customization requirements due to the development of the training strategies. Hence, MMEngine proposes parameter schedulers (ParamScheduler). The interface of the parameter scheduler is consistent with PyTroch's learning rate scheduler (LRScheduler). In addition, the parameter scheduler provides stronger functions. For details, please refer to [Parameter Scheduler User Guide](../tutorials/param_scheduler.md). ## Learning rate scheduler (LrUpdater) migration MMEngine uses LRScheduler instead of LrUpdaterHook. The field in the config file is changed from the original `lr_config` to `param_scheduler`. The learning rate config in MMCV corresponds to the parameter scheduler config in MMEngine as follows: ### Learning rate warm-up migration The learning rate warm-up can be achieved through the combination of schedulers by specifying the effective range `begin` and `end`. There are 3 learning rate warm-up methods in MMCV, namely `'constant'`, `'linear'`, `'exp'`. The corresponding config in MMEngine should be modified as follows: #### Constant warm-up
MMCV-1.x MMEngine
```python lr_config = dict( warmup='constant', warmup_ratio=0.1, warmup_iters=500, warmup_by_epoch=False ) ``` ```python param_scheduler = [ dict(type='ConstantLR', factor=0.1, begin=0, end=500, by_epoch=False), dict(...) # the main learning rate scheduler ] ```
#### Linear warm-up
MMCV-1.x MMEngine
```python lr_config = dict( warmup='linear', warmup_ratio=0.1, warmup_iters=500, warmup_by_epoch=False ) ``` ```python param_scheduler = [ dict(type='LinearLR', start_factor=0.1, begin=0, end=500, by_epoch=False), dict(...) # the main learning rate scheduler ] ```
#### Exponential warm-up
MMCV-1.x MMEngine
```python lr_config = dict( warmup='exp', warmup_ratio=0.1, warmup_iters=500, warmup_by_epoch=False ) ``` ```python param_scheduler = [ dict(type='ExponentialLR', gamma=0.1, begin=0, end=500, by_epoch=False), dict(...) # the main learning rate scheduler ] ```
### Fixed learning rate (FixedLrUpdaterHook) migration
MMCV-1.x MMEngine
```python lr_config = dict(policy='fixed') ``` ```python param_scheduler = [ dict(type='ConstantLR', factor=1) ] ```
### Step learning rate (StepLrUpdaterHook) migration
MMCV-1.x MMEngine
```python lr_config = dict( policy='step', step=[8, 11], gamma=0.1, by_epoch=True ) ``` ```python param_scheduler = [ dict(type='MultiStepLR', milestone=[8, 11], gamma=0.1, by_epoch=True) ] ```
### Poly learning rate (PolyLrUpdaterHook) migration
MMCV-1.x MMEngine
```python lr_config = dict( policy='poly', power=0.7, min_lr=0.001, by_epoch=True ) ``` ```python param_scheduler = [ dict(type='PolyLR', power=0.7, eta_min=0.001, begin=0, end=num_epochs, by_epoch=True) ] ```
### Exponential learning rate (ExpLrUpdaterHook) migration
MMCV-1.x MMEngine
```python lr_config = dict( policy='exp', power=0.5, by_epoch=True ) ``` ```python param_scheduler = [ dict(type='ExponentialLR', gamma=0.5, begin=0, end=num_epochs, by_epoch=True) ] ```
### Cosine annealing learning rate (CosineAnnealingLrUpdaterHook) migration
MMCV-1.x MMEngine
```python lr_config = dict( policy='CosineAnnealing', min_lr=0.5, by_epoch=True ) ``` ```python param_scheduler = [ dict(type='CosineAnnealingLR', eta_min=0.5, T_max=num_epochs, begin=0, end=num_epochs, by_epoch=True) ] ```
### FlatCosineAnnealingLrUpdaterHook migration The learning rate strategy combined by multiple phases like FlatCosineAnnealing originally needs to be achieved by rewriting a Hook. But in MMEngine, it can be achieved with combining two parameter scheduler configs:
MMCV-1.x MMEngine
```python lr_config = dict( policy='FlatCosineAnnealing', start_percent=0.5, min_lr=0.005, by_epoch=True ) ``` ```python param_scheduler = [ dict(type='ConstantLR', factor=1, begin=0, end=num_epochs * 0.75) dict(type='CosineAnnealingLR', eta_min=0.005, begin=num_epochs * 0.75, end=num_epochs, T_max=num_epochs * 0.25, by_epoch=True) ] ```
### CosineRestartLrUpdaterHook migration
MMCV-1.x MMEngine
```python lr_config = dict(policy='CosineRestart', periods=[5, 10, 15], restart_weights=[1, 0.7, 0.3], min_lr=0.001, by_epoch=True) ``` ```python param_scheduler = [ dict(type='CosineRestartLR', periods=[5, 10, 15], restart_weights=[1, 0.7, 0.3], eta_min=0.001, by_epoch=True) ] ```
### OneCycleLrUpdaterHook migration
MMCV-1.x MMEngine
```python lr_config = dict(policy='OneCycle', max_lr=0.02, total_steps=90000, pct_start=0.3, anneal_strategy='cos', div_factor=25, final_div_factor=1e4, three_phase=True, by_epoch=False) ``` ```python param_scheduler = [ dict(type='OneCycleLR', eta_max=0.02, total_steps=90000, pct_start=0.3, anneal_strategy='cos', div_factor=25, final_div_factor=1e4, three_phase=True, by_epoch=False) ] ```
Notice: `by_epoch` defaults to `False` in MMCV. It now defaults to `True` in MMEngine. ### LinearAnnealingLrUpdaterHook migration
MMCV-1.x MMEngine
```python lr_config = dict( policy='LinearAnnealing', min_lr_ratio=0.01, by_epoch=True ) ``` ```python param_scheduler = [ dict(type='LinearLR', start_factor=1, end_factor=0.01, begin=0, end=num_epochs, by_epoch=True) ] ```
## MomentumUpdater migration MMCV uses `momentum_config` field and MomentumUpdateHook to adjust momentum. The momentum in MMEngine is also controlled by the parameter scheduler. Users can simply change the `LR` of the learning rate scheduler to `Momentum` to use the same strategy to adjust the momentum. The momentum scheduler shares the same `param_scheduler` field in the config with the learning rate scheduler:
MMCV-1.x MMEngine
```python lr_config = dict(...) momentum_config = dict( policy='CosineAnnealing', min_momentum=0.1, by_epoch=True ) ``` ```python param_scheduler = [ # config of learning rate schedulers dict(...), # config of momentum schedulers dict(type='CosineAnnealingMomentum', eta_min=0.1, T_max=num_epochs, begin=0, end=num_epochs, by_epoch=True) ] ```
## Migrate parameter update frequency related config If you want to update the parameter rate based on iteration while using the epoch-based training loop and setting the effective range (`begin`, `end`) or period (`T_max`) and other variables according to epoch in MMCV, you need to set `by_epoch` to False. However, in MMEngine, the `by_epoch` in the config still needs to be set to True. Instead, you need to add `convert_to_iter_based=True` in the config to build a parameter scheduler which updates by iteration, see [Parameter Scheduler Tutorial](../tutorials/param_scheduler.md) for more details. Take the migration of CosineAnnealing as an example:
MMCV-1.x MMEngine
```python lr_config = dict( policy='CosineAnnealing', min_lr=0.5, by_epoch=False ) ``` ```python param_scheduler = [ dict( type='CosineAnnealingLR', eta_min=0.5, T_max=num_epochs, by_epoch=True, # Notice, by_epoch need to be set to True convert_to_iter_based=True # convert to an iter-based scheduler ) ] ```
You may also want to read [parameter scheduler tutorial](../tutorials/param_scheduler.md) or [parameter scheduler API documentations](../api/optim).