# Copyright (c) OpenMMLab. All rights reserved. import copy from unittest.mock import Mock import torch.nn as nn from torch.optim import SGD from mmengine.hooks import RuntimeInfoHook from mmengine.optim import OptimWrapper, OptimWrapperDict from mmengine.registry import DATASETS from mmengine.testing import RunnerTestCase class DatasetWithoutMetainfo: ... def __len__(self): return 12 class DatasetWithMetainfo(DatasetWithoutMetainfo): metainfo: dict = dict() class TestRuntimeInfoHook(RunnerTestCase): def setUp(self) -> None: DATASETS.register_module(module=DatasetWithoutMetainfo, force=True) DATASETS.register_module(module=DatasetWithMetainfo, force=True) return super().setUp() def tearDown(self): DATASETS.module_dict.pop('DatasetWithoutMetainfo') DATASETS.module_dict.pop('DatasetWithMetainfo') return super().tearDown() def test_before_train(self): cfg = copy.deepcopy(self.epoch_based_cfg) cfg.train_dataloader.dataset.type = 'DatasetWithoutMetainfo' runner = self.build_runner(cfg) hook = self._get_runtime_info_hook(runner) hook.before_train(runner) self.assertEqual(runner.message_hub.get_info('epoch'), 0) self.assertEqual(runner.message_hub.get_info('iter'), 0) self.assertEqual(runner.message_hub.get_info('max_epochs'), 2) self.assertEqual(runner.message_hub.get_info('max_iters'), 8) with self.assertRaisesRegex(KeyError, 'dataset_meta is not found'): runner.message_hub.get_info('dataset_meta') cfg.train_dataloader.dataset.type = 'DatasetWithMetainfo' runner = self.build_runner(cfg) hook.before_train(runner) self.assertEqual(runner.message_hub.get_info('dataset_meta'), dict()) def test_before_train_epoch(self): cfg = copy.deepcopy(self.epoch_based_cfg) runner = self.build_runner(cfg) runner.train_loop._epoch = 9 hook = self._get_runtime_info_hook(runner) hook.before_train_epoch(runner) self.assertEqual(runner.message_hub.get_info('epoch'), 9) def test_before_train_iter(self): # single optimizer cfg = copy.deepcopy(self.epoch_based_cfg) lr = cfg.optim_wrapper.optimizer.lr runner = self.build_runner(cfg) # set iter runner.train_loop._iter = 9 # build optim wrapper runner.optim_wrapper = runner.build_optim_wrapper(runner.optim_wrapper) hook = self._get_runtime_info_hook(runner) hook.before_train_iter(runner, batch_idx=2, data_batch=None) self.assertEqual(runner.message_hub.get_info('iter'), 9) self.assertEqual( runner.message_hub.get_scalar('train/lr').current(), lr) with self.assertRaisesRegex(AssertionError, 'runner.optim_wrapper.get_lr()'): runner.optim_wrapper = Mock() runner.optim_wrapper.get_lr = Mock(return_value='error type') hook.before_train_iter(runner, batch_idx=2, data_batch=None) # multiple optimizers model = nn.ModuleDict( dict( layer1=nn.Linear(1, 1), layer2=nn.Linear(1, 1), )) optim1 = SGD(model.layer1.parameters(), lr=0.01) optim2 = SGD(model.layer2.parameters(), lr=0.02) optim_wrapper1 = OptimWrapper(optim1) optim_wrapper2 = OptimWrapper(optim2) optim_wrapper_dict = OptimWrapperDict( key1=optim_wrapper1, key2=optim_wrapper2) runner.optim_wrapper = optim_wrapper_dict hook.before_train_iter(runner, batch_idx=2, data_batch=None) self.assertEqual( runner.message_hub.get_scalar('train/key1.lr').current(), 0.01) self.assertEqual( runner.message_hub.get_scalar('train/key2.lr').current(), 0.02) def test_after_train_iter(self): cfg = copy.deepcopy(self.epoch_based_cfg) runner = self.build_runner(cfg) hook = self._get_runtime_info_hook(runner) hook.after_train_iter( runner, batch_idx=2, data_batch=None, outputs={'loss_cls': 1.111}) self.assertEqual( runner.message_hub.get_scalar('train/loss_cls').current(), 1.111) def test_after_val_epoch(self): cfg = copy.deepcopy(self.epoch_based_cfg) runner = self.build_runner(cfg) hook = self._get_runtime_info_hook(runner) hook.after_val_epoch(runner, metrics={'acc': 0.8}) self.assertEqual( runner.message_hub.get_scalar('val/acc').current(), 0.8) def test_after_test_epoch(self): cfg = copy.deepcopy(self.epoch_based_cfg) runner = self.build_runner(cfg) hook = self._get_runtime_info_hook(runner) hook.after_test_epoch(runner, metrics={'acc': 0.8}) self.assertEqual( runner.message_hub.get_scalar('test/acc').current(), 0.8) def _get_runtime_info_hook(self, runner): for hook in runner.hooks: if isinstance(hook, RuntimeInfoHook): return hook