# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch import torch.nn.functional as F from torch import nn from mmengine.runner.activation_checkpointing import \ turn_on_activation_checkpointing from mmengine.testing import assert_allclose class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1) self.bn1 = nn.BatchNorm2d(16) self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1) self.bn2 = nn.BatchNorm2d(32) self.conv3 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1) self.bn3 = nn.BatchNorm2d(64) self.pool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(64, 10) def forward(self, x): x = self.bn1(self.conv1(x)) x = F.relu(x) x = self.bn2(self.conv2(x)) x = F.relu(x) x = self.bn3(self.conv3(x)) x = F.relu(x) x = self.pool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x class TestActivationCheckpointing(TestCase): def test_activation_checkpointing(self): model = Model() input = torch.randn(16, 3, 224, 224) input.requires_grad = True output = model(input) output.sum().backward() grad = input.grad.clone() turn_on_activation_checkpointing(model, ['conv1', 'conv2', 'conv3']) output2 = model(input) output2.sum().backward() grad2 = input.grad.clone() assert_allclose(output, output2) assert_allclose(grad, grad2, rtol=1e-3, atol=1e-3)