# Better performance optimizers This document provides some third-party optimizers supported by MMEngine, which may bring faster convergence speed or higher performance. ## D-Adaptation [D-Adaptation](https://github.com/facebookresearch/dadaptation) provides `DAdaptAdaGrad`, `DAdaptAdam` and `DAdaptSGD` optimziers。 ```{note} If you use the optimizer provided by D-Adaptation, you need to upgrade mmengine to `0.6.0`. ``` - Installation ```bash pip install dadaptation ``` - Usage Take the `DAdaptAdaGrad` as an example. ```python runner = Runner( model=ResNet18(), work_dir='./work_dir', train_dataloader=train_dataloader_cfg, # To view the input parameters for DAdaptAdaGrad, you can refer to # https://github.com/facebookresearch/dadaptation/blob/main/dadaptation/dadapt_adagrad.py optim_wrapper=dict(optimizer=dict(type='DAdaptAdaGrad', lr=0.001, momentum=0.9)), train_cfg=dict(by_epoch=True, max_epochs=3), ) runner.train() ``` ## Lion-Pytorch [lion-pytorch](https://github.com/lucidrains/lion-pytorch) provides the `Lion` optimizer。 ```{note} If you use the optimizer provided by Lion-Pytorch, you need to upgrade mmengine to `0.6.0`. ``` - Installation ```bash pip install lion-pytorch ``` - Usage ```python runner = Runner( model=ResNet18(), work_dir='./work_dir', train_dataloader=train_dataloader_cfg, # To view the input parameters for Lion, you can refer to # https://github.com/lucidrains/lion-pytorch/blob/main/lion_pytorch/lion_pytorch.py optim_wrapper=dict(optimizer=dict(type='Lion', lr=1e-4, weight_decay=1e-2)), train_cfg=dict(by_epoch=True, max_epochs=3), ) runner.train() ``` ## Sophia [Sophia](https://github.com/kyegomez/Sophia) provides `Sophia`, `SophiaG`, `DecoupledSophia` and `Sophia2` optimizers. ```{note} If you use the optimizer provided by Sophia, you need to upgrade mmengine to `0.7.4`. ``` - Installation ```bash pip install Sophia-Optimizer ``` - Usage ```python runner = Runner( model=ResNet18(), work_dir='./work_dir', train_dataloader=train_dataloader_cfg, # To view the input parameters for SophiaG, you can refer to # https://github.com/kyegomez/Sophia/blob/main/Sophia/Sophia.py optim_wrapper=dict(optimizer=dict(type='SophiaG', lr=2e-4, betas=(0.965, 0.99), rho = 0.01, weight_decay=1e-1)), train_cfg=dict(by_epoch=True, max_epochs=3), ) runner.train() ``` ## bitsandbytes [bitsandbytes](https://github.com/TimDettmers/bitsandbytes) provides `AdamW8bit`, `Adam8bit`, `Adagrad8bit`, `PagedAdam8bit`, `PagedAdamW8bit`, `LAMB8bit`, `LARS8bit`, `RMSprop8bit`, `Lion8bit`, `PagedLion8bit` and `SGD8bit` optimziers。 ```{note} If you use the optimizer provided by bitsandbytes, you need to upgrade mmengine to `0.9.0`. ``` - Installation ```bash pip install bitsandbytes ``` - Usage Take the `AdamW8bit` as an example. ```python runner = Runner( model=ResNet18(), work_dir='./work_dir', train_dataloader=train_dataloader_cfg, # To view the input parameters for AdamW8bit, you can refer to # https://github.com/TimDettmers/bitsandbytes/blob/main/bitsandbytes/optim/adamw.py optim_wrapper=dict(optimizer=dict(type='AdamW8bit', lr=1e-4, weight_decay=1e-2)), train_cfg=dict(by_epoch=True, max_epochs=3), ) runner.train() ``` ## transformers [transformers](https://github.com/huggingface/transformers) provides `Adafactor` optimzier。 ```{note} If you use the optimizer provided by transformers, you need to upgrade mmengine to `0.9.0`. ``` - Installation ```bash pip install transformers ``` - Usage Take the `Adafactor` as an example. ```python runner = Runner( model=ResNet18(), work_dir='./work_dir', train_dataloader=train_dataloader_cfg, # To view the input parameters for Adafactor, you can refer to # https://github.com/huggingface/transformers/blob/v4.33.2/src/transformers/optimization.py#L492 optim_wrapper=dict(optimizer=dict(type='Adafactor', lr=1e-5, weight_decay=1e-2, scale_parameter=False, relative_step=False)), train_cfg=dict(by_epoch=True, max_epochs=3), ) runner.train() ```