# Copyright (c) OpenMMLab. All rights reserved. import copy from typing import Any from unittest import TestCase import matplotlib.pyplot as plt import numpy as np import pytest import torch import torch.nn as nn from mmengine import VISBACKENDS, Config from mmengine.visualization import Visualizer @VISBACKENDS.register_module() class MockVisBackend: def __init__(self, save_dir: str): self._save_dir = save_dir self._close = False @property def experiment(self) -> Any: return self def add_config(self, config, **kwargs) -> None: self._add_config = True def add_graph(self, model, data_batch, **kwargs) -> None: self._add_graph = True def add_image(self, name, image, step=0, **kwargs) -> None: self._add_image = True def add_scalar(self, name, value, step=0, **kwargs) -> None: self._add_scalar = True def add_scalars(self, scalar_dict, step=0, file_path=None, **kwargs) -> None: self._add_scalars = True def close(self) -> None: """close an opened object.""" self._close = True class TestVisualizer(TestCase): def setUp(self): """Setup the demo image in every test method. TestCase calls functions in this order: setUp() -> testMethod() -> tearDown() -> cleanUp() """ self.image = np.random.randint( 0, 256, size=(10, 10, 3)).astype('uint8') self.vis_backend_cfg = [ dict(type='MockVisBackend', name='mock1'), dict(type='MockVisBackend', name='mock2') ] def test_init(self): visualizer = Visualizer(image=self.image) visualizer.get_image() # test save_dir with pytest.warns( Warning, match='`Visualizer` backend is not initialized ' 'because save_dir is None.'): Visualizer() visualizer = Visualizer( vis_backends=copy.deepcopy(self.vis_backend_cfg)) assert visualizer.get_backend('mock1') is None visualizer = Visualizer( vis_backends=copy.deepcopy(self.vis_backend_cfg), save_dir='temp_dir') assert isinstance(visualizer.get_backend('mock1'), MockVisBackend) assert len(visualizer._vis_backends) == 2 # test empty list with pytest.raises(AssertionError): Visualizer(vis_backends=[], save_dir='temp_dir') # test name # If one of them has a name attribute, all backends must # use the name attribute with pytest.raises(RuntimeError): Visualizer( vis_backends=[ dict(type='MockVisBackend'), dict(type='MockVisBackend', name='mock2') ], save_dir='temp_dir') # The name fields cannot be the same with pytest.raises(RuntimeError): Visualizer( vis_backends=[ dict(type='MockVisBackend'), dict(type='MockVisBackend') ], save_dir='temp_dir') with pytest.raises(RuntimeError): Visualizer( vis_backends=[ dict(type='MockVisBackend', name='mock1'), dict(type='MockVisBackend', name='mock1') ], save_dir='temp_dir') # test global init visualizer = Visualizer.get_instance( 'visualizer', vis_backends=copy.deepcopy(self.vis_backend_cfg), save_dir='temp_dir') assert len(visualizer._vis_backends) == 2 visualizer_any = Visualizer.get_instance('visualizer') assert visualizer_any == visualizer def test_set_image(self): visualizer = Visualizer() visualizer.set_image(self.image) with pytest.raises(AssertionError): visualizer.set_image(None) def test_get_image(self): visualizer = Visualizer(image=self.image) visualizer.get_image() def test_draw_bboxes(self): visualizer = Visualizer(image=self.image) # only support 4 or nx4 tensor and numpy visualizer.draw_bboxes(torch.tensor([1, 1, 2, 2])) # valid bbox visualizer.draw_bboxes(torch.tensor([1, 1, 1, 2])) bboxes = torch.tensor([[1, 1, 2, 2], [1, 2, 2, 2.5]]) visualizer.draw_bboxes( bboxes, alpha=0.5, edge_colors=(255, 0, 0), line_styles='-') bboxes = bboxes.numpy() visualizer.draw_bboxes(bboxes) # test invalid bbox with pytest.raises(AssertionError): # x1 > x2 visualizer.draw_bboxes(torch.tensor([5, 1, 2, 2])) # test out of bounds with pytest.warns( UserWarning, match='Warning: The bbox is out of bounds,' ' the drawn bbox may not be in the image'): visualizer.draw_bboxes(torch.tensor([1, 1, 20, 2])) # test incorrect bbox format with pytest.raises(TypeError): visualizer.draw_bboxes([1, 1, 2, 2]) def test_close(self): visualizer = Visualizer( image=self.image, vis_backends=copy.deepcopy(self.vis_backend_cfg), save_dir='temp_dir') fig_num = visualizer.fig_save_num assert fig_num in plt.get_fignums() for name in ['mock1', 'mock2']: assert visualizer.get_backend(name)._close is False visualizer.close() assert fig_num not in plt.get_fignums() for name in ['mock1', 'mock2']: assert visualizer.get_backend(name)._close is True def test_draw_points(self): visualizer = Visualizer(image=self.image) with pytest.raises(TypeError): visualizer.draw_points(positions=[1, 2]) with pytest.raises(AssertionError): visualizer.draw_points(positions=np.array([1, 2, 3])) # test color visualizer.draw_points( positions=torch.tensor([[1, 1], [3, 3]]), colors=['g', (255, 255, 0)]) visualizer.draw_points( positions=torch.tensor([[1, 1], [3, 3]]), colors=['g', (255, 255, 0)], marker='.', sizes=[1, 5]) def test_draw_texts(self): visualizer = Visualizer(image=self.image) # only support tensor and numpy visualizer.draw_texts( 'text1', positions=torch.tensor([5, 5]), colors=(0, 255, 0)) visualizer.draw_texts(['text1', 'text2'], positions=torch.tensor([[5, 5], [3, 3]]), colors=[(255, 0, 0), (255, 0, 0)]) visualizer.draw_texts('text1', positions=np.array([5, 5])) visualizer.draw_texts(['text1', 'text2'], positions=np.array([[5, 5], [3, 3]])) visualizer.draw_texts( 'text1', positions=torch.tensor([5, 5]), bboxes=dict(facecolor='r', alpha=0.6)) # test out of bounds with pytest.warns( UserWarning, match='Warning: The text is out of bounds,' ' the drawn text may not be in the image'): visualizer.draw_texts('text1', positions=torch.tensor([15, 5])) # test incorrect format with pytest.raises(TypeError): visualizer.draw_texts('text', positions=[5, 5]) # test length mismatch with pytest.raises(AssertionError): visualizer.draw_texts(['text1', 'text2'], positions=torch.tensor([5, 5])) with pytest.raises(AssertionError): visualizer.draw_texts( 'text1', positions=torch.tensor([[5, 5], [3, 3]])) with pytest.raises(AssertionError): visualizer.draw_texts(['text1', 'test2'], positions=torch.tensor([[5, 5], [3, 3]]), colors=['r']) with pytest.raises(AssertionError): visualizer.draw_texts(['text1', 'test2'], positions=torch.tensor([[5, 5], [3, 3]]), vertical_alignments=['top']) with pytest.raises(AssertionError): visualizer.draw_texts(['text1', 'test2'], positions=torch.tensor([[5, 5], [3, 3]]), horizontal_alignments=['left']) with pytest.raises(AssertionError): visualizer.draw_texts(['text1', 'test2'], positions=torch.tensor([[5, 5], [3, 3]]), font_sizes=[1]) # test type valid with pytest.raises(TypeError): visualizer.draw_texts(['text1', 'test2'], positions=torch.tensor([[5, 5], [3, 3]]), font_sizes='b') def test_draw_lines(self): visualizer = Visualizer(image=self.image) # only support tensor and numpy visualizer.draw_lines( x_datas=torch.tensor([1, 5]), y_datas=torch.tensor([2, 6])) visualizer.draw_lines( x_datas=np.array([[1, 5], [2, 4]]), y_datas=np.array([[2, 6], [4, 7]])) visualizer.draw_lines( x_datas=np.array([[1, 5], [2, 4]]), y_datas=np.array([[2, 6], [4, 7]]), colors='r', line_styles=['-', '-.'], line_widths=[1, 2]) # test out of bounds with pytest.warns( UserWarning, match='Warning: The line is out of bounds,' ' the drawn line may not be in the image'): visualizer.draw_lines( x_datas=torch.tensor([12, 5]), y_datas=torch.tensor([2, 6])) # test incorrect format with pytest.raises(TypeError): visualizer.draw_lines(x_datas=[5, 5], y_datas=torch.tensor([2, 6])) with pytest.raises(TypeError): visualizer.draw_lines(y_datas=[5, 5], x_datas=torch.tensor([2, 6])) # test length mismatch with pytest.raises(AssertionError): visualizer.draw_lines( x_datas=torch.tensor([1, 5]), y_datas=torch.tensor([[2, 6], [4, 7]])) def test_draw_circles(self): visualizer = Visualizer(image=self.image) # only support tensor and numpy visualizer.draw_circles(torch.tensor([1, 5]), torch.tensor([1])) visualizer.draw_circles(np.array([1, 5]), np.array([1])) visualizer.draw_circles( torch.tensor([[1, 5], [2, 6]]), radius=torch.tensor([1, 2])) # test face_colors visualizer.draw_circles( torch.tensor([[1, 5], [2, 6]]), radius=torch.tensor([1, 2]), face_colors=(255, 0, 0), edge_colors=(255, 0, 0)) # test config visualizer.draw_circles( torch.tensor([[1, 5], [2, 6]]), radius=torch.tensor([1, 2]), edge_colors=['g', 'r'], line_styles=['-', '-.'], line_widths=[1, 2]) # test out of bounds with pytest.warns( UserWarning, match='Warning: The circle is out of bounds,' ' the drawn circle may not be in the image'): visualizer.draw_circles( torch.tensor([12, 5]), radius=torch.tensor([1])) visualizer.draw_circles( torch.tensor([1, 5]), radius=torch.tensor([10])) # test incorrect format with pytest.raises(TypeError): visualizer.draw_circles([1, 5], radius=torch.tensor([1])) with pytest.raises(TypeError): visualizer.draw_circles(np.array([1, 5]), radius=10) # test length mismatch with pytest.raises(AssertionError): visualizer.draw_circles( torch.tensor([[1, 5]]), radius=torch.tensor([1, 2])) def test_draw_polygons(self): visualizer = Visualizer(image=self.image) # shape Nx2 or list[Nx2] visualizer.draw_polygons(torch.tensor([[1, 1], [2, 2], [3, 4]])) visualizer.draw_polygons(np.array([[1, 1], [2, 2], [3, 4]])) visualizer.draw_polygons([ np.array([[1, 1], [2, 2], [3, 4]]), torch.tensor([[1, 1], [2, 2], [3, 4]]) ]) visualizer.draw_polygons( polygons=[ np.array([[1, 1], [2, 2], [3, 4]]), torch.tensor([[1, 1], [2, 2], [3, 4]]) ], face_colors=(255, 0, 0), edge_colors=(255, 0, 0)) visualizer.draw_polygons( polygons=[ np.array([[1, 1], [2, 2], [3, 4]]), torch.tensor([[1, 1], [2, 2], [3, 4]]) ], edge_colors=['r', 'g'], line_styles='-', line_widths=[2, 1]) # test out of bounds with pytest.warns( UserWarning, match='Warning: The polygon is out of bounds,' ' the drawn polygon may not be in the image'): visualizer.draw_polygons(torch.tensor([[1, 1], [2, 2], [16, 4]])) def test_draw_binary_masks(self): binary_mask = np.random.randint(0, 2, size=(10, 10)).astype(np.bool) visualizer = Visualizer(image=self.image) visualizer.draw_binary_masks(binary_mask) visualizer.draw_binary_masks(torch.from_numpy(binary_mask)) # multi binary binary_mask = np.random.randint(0, 2, size=(2, 10, 10)).astype(np.bool) visualizer = Visualizer(image=self.image) visualizer.draw_binary_masks(binary_mask, colors=['r', (0, 255, 0)]) # test the error that the size of mask and image are different. with pytest.raises(AssertionError): binary_mask = np.random.randint(0, 2, size=(8, 10)).astype(np.bool) visualizer.draw_binary_masks(binary_mask) # test non binary mask error binary_mask = np.random.randint(0, 2, size=(10, 10, 3)).astype(np.bool) with pytest.raises(AssertionError): visualizer.draw_binary_masks(binary_mask) # test color dim with pytest.raises(AssertionError): visualizer.draw_binary_masks( binary_mask, colors=np.array([1, 22, 4, 45])) binary_mask = np.random.randint(0, 2, size=(10, 10)) with pytest.raises(AssertionError): visualizer.draw_binary_masks(binary_mask) def test_draw_featmap(self): visualizer = Visualizer() image = np.random.randint(0, 256, size=(3, 3, 3), dtype='uint8') # must be Tensor with pytest.raises( AssertionError, match='`featmap` should be torch.Tensor, but got ' ""): visualizer.draw_featmap(np.ones((3, 3, 3))) # test tensor format with pytest.raises( AssertionError, match='Input dimension must be 3, but got 4'): visualizer.draw_featmap(torch.randn(1, 1, 3, 3)) # test overlaid_image shape with pytest.warns(Warning): visualizer.draw_featmap(torch.randn(1, 4, 3), overlaid_image=image) # test resize_shape featmap = visualizer.draw_featmap( torch.randn(1, 4, 3), resize_shape=(6, 7)) assert featmap.shape[:2] == (6, 7) featmap = visualizer.draw_featmap( torch.randn(1, 4, 3), overlaid_image=image, resize_shape=(6, 7)) assert featmap.shape[:2] == (6, 7) # test channel_reduction parameter # mode only supports 'squeeze_mean' and 'select_max' with pytest.raises(AssertionError): visualizer.draw_featmap( torch.randn(2, 3, 3), channel_reduction='xx') featmap = visualizer.draw_featmap( torch.randn(2, 3, 3), channel_reduction='squeeze_mean') assert featmap.shape[:2] == (3, 3) featmap = visualizer.draw_featmap( torch.randn(2, 3, 3), channel_reduction='select_max') assert featmap.shape[:2] == (3, 3) featmap = visualizer.draw_featmap( torch.randn(2, 4, 3), overlaid_image=image, channel_reduction='select_max') assert featmap.shape[:2] == (3, 3) # test topk parameter with pytest.raises( AssertionError, match='The input tensor channel dimension must be 1 or 3 ' 'when topk is less than 1, but the channel ' 'dimension you input is 6, you can use the ' 'channel_reduction parameter or set topk ' 'greater than 0 to solve the error'): visualizer.draw_featmap( torch.randn(6, 3, 3), channel_reduction=None, topk=0) featmap = visualizer.draw_featmap( torch.randn(6, 3, 3), channel_reduction='select_max', topk=10) assert featmap.shape[:2] == (3, 3) featmap = visualizer.draw_featmap( torch.randn(1, 4, 3), channel_reduction=None, topk=-1) assert featmap.shape[:2] == (4, 3) featmap = visualizer.draw_featmap( torch.randn(3, 4, 3), overlaid_image=image, channel_reduction=None, topk=-1) assert featmap.shape[:2] == (3, 3) featmap = visualizer.draw_featmap( torch.randn(6, 3, 3), channel_reduction=None, topk=4, arrangement=(2, 2)) assert featmap.shape[:2] == (6, 6) featmap = visualizer.draw_featmap( torch.randn(6, 3, 3), channel_reduction=None, topk=4, arrangement=(1, 4)) assert featmap.shape[:2] == (3, 12) with pytest.raises( AssertionError, match='The product of row and col in the `arrangement` ' 'is less than topk, please set ' 'the `arrangement` correctly'): visualizer.draw_featmap( torch.randn(6, 3, 3), channel_reduction=None, topk=4, arrangement=(1, 2)) # test gray featmap = visualizer.draw_featmap( torch.randn(6, 3, 3), overlaid_image=np.random.randint( 0, 256, size=(3, 3), dtype='uint8'), channel_reduction=None, topk=4, arrangement=(2, 2)) assert featmap.shape[:2] == (6, 6) def test_chain_call(self): visualizer = Visualizer(image=self.image) binary_mask = np.random.randint(0, 2, size=(10, 10)).astype(np.bool) visualizer.draw_bboxes(torch.tensor([1, 1, 2, 2])). \ draw_texts('test', torch.tensor([5, 5])). \ draw_lines(x_datas=torch.tensor([1, 5]), y_datas=torch.tensor([2, 6])). \ draw_circles(torch.tensor([1, 5]), radius=torch.tensor([2])). \ draw_polygons(torch.tensor([[1, 1], [2, 2], [3, 4]])). \ draw_binary_masks(binary_mask) def test_get_backend(self): visualizer = Visualizer( image=self.image, vis_backends=copy.deepcopy(self.vis_backend_cfg), save_dir='temp_dir') for name in ['mock1', 'mock2']: assert isinstance(visualizer.get_backend(name), MockVisBackend) def test_add_config(self): visualizer = Visualizer( vis_backends=copy.deepcopy(self.vis_backend_cfg), save_dir='temp_dir') cfg = Config(dict(a=1, b=dict(b1=[0, 1]))) visualizer.add_config(cfg) for name in ['mock1', 'mock2']: assert visualizer.get_backend(name)._add_config is True def test_add_graph(self): visualizer = Visualizer( vis_backends=copy.deepcopy(self.vis_backend_cfg), save_dir='temp_dir') class Model(nn.Module): def __init__(self): super().__init__() self.conv = nn.Conv2d(1, 2, 1) def forward(self, x, y=None): return self.conv(x) visualizer.add_graph(Model(), np.zeros([1, 1, 3, 3])) for name in ['mock1', 'mock2']: assert visualizer.get_backend(name)._add_graph is True def test_add_image(self): image = np.random.randint(0, 256, size=(10, 10, 3)).astype(np.uint8) visualizer = Visualizer( vis_backends=copy.deepcopy(self.vis_backend_cfg), save_dir='temp_dir') visualizer.add_image('img', image) for name in ['mock1', 'mock2']: assert visualizer.get_backend(name)._add_image is True def test_add_scalar(self): visualizer = Visualizer( vis_backends=copy.deepcopy(self.vis_backend_cfg), save_dir='temp_dir') visualizer.add_scalar('map', 0.9, step=0) for name in ['mock1', 'mock2']: assert visualizer.get_backend(name)._add_scalar is True def test_add_scalars(self): visualizer = Visualizer( vis_backends=copy.deepcopy(self.vis_backend_cfg), save_dir='temp_dir') input_dict = {'map': 0.7, 'acc': 0.9} visualizer.add_scalars(input_dict) for name in ['mock1', 'mock2']: assert visualizer.get_backend(name)._add_scalars is True def test_get_instance(self): class DetLocalVisualizer(Visualizer): def __init__(self, name): super().__init__(name) visualizer1 = DetLocalVisualizer.get_instance('name1') visualizer2 = Visualizer.get_current_instance() visualizer3 = DetLocalVisualizer.get_current_instance() assert id(visualizer1) == id(visualizer2) == id(visualizer3) def test_data_info(self): visualizer = Visualizer() visualizer.dataset_meta = {'class': 'cat'} assert visualizer.dataset_meta['class'] == 'cat'