387 lines
15 KiB
Python
387 lines
15 KiB
Python
import os.path as osp
|
|
from unittest.mock import MagicMock
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from mmengine.data import (BaseDataset, ClassBalancedDataset, ConcatDataset,
|
|
RepeatDataset)
|
|
|
|
|
|
class TestBaseDataset:
|
|
|
|
def __init__(self):
|
|
self.base_dataset = BaseDataset
|
|
|
|
self.data_info = dict(filename='test_img.jpg', height=604, width=640)
|
|
self.base_dataset.parse_annotations = MagicMock(
|
|
return_value=self.data_info)
|
|
|
|
self.imgs = torch.rand((2, 3, 32, 32))
|
|
self.base_dataset.pipeline = MagicMock(
|
|
return_value=dict(imgs=self.imgs))
|
|
|
|
def test_init(self):
|
|
# test the instantiation of self.base_dataset
|
|
dataset = self.base_dataset(
|
|
data_root=osp.join(osp.dirname(__file__), '../data/'),
|
|
data_prefix=dict(img='imgs'),
|
|
ann_file='annotations/dummy_annotation.json')
|
|
assert dataset._fully_initialized
|
|
assert hasattr(dataset, 'data_infos')
|
|
assert hasattr(dataset, 'data_address')
|
|
|
|
# test the instantiation of self.base_dataset with
|
|
# `serialize_data=False`
|
|
dataset = self.base_dataset(
|
|
data_root=osp.join(osp.dirname(__file__), '../data/'),
|
|
data_prefix=dict(img='imgs'),
|
|
ann_file='annotations/dummy_annotation.json',
|
|
serialize_data=False)
|
|
assert dataset._fully_initialized
|
|
assert hasattr(dataset, 'data_infos')
|
|
assert not hasattr(dataset, 'data_address')
|
|
|
|
# test the instantiation of self.base_dataset with lazy init
|
|
dataset = self.base_dataset(
|
|
data_root=osp.join(osp.dirname(__file__), '../data/'),
|
|
data_prefix=dict(img='imgs'),
|
|
ann_file='annotations/dummy_annotation.json',
|
|
lazy_init=True)
|
|
assert not dataset._fully_initialized
|
|
assert not hasattr(dataset, 'data_infos')
|
|
|
|
# test the instantiation of self.base_dataset when the ann_file is
|
|
# wrong
|
|
with pytest.raises(ValueError):
|
|
self.base_dataset(
|
|
data_root=osp.join(osp.dirname(__file__), '../data/'),
|
|
data_prefix=dict(img='imgs'),
|
|
ann_file='annotations/wrong_annotation.json')
|
|
|
|
# test the instantiation of self.base_dataset when `parse_annotations`
|
|
# return `list[dict]`
|
|
self.base_dataset.parse_annotations = MagicMock(
|
|
return_value=[self.data_info,
|
|
self.data_info.copy()])
|
|
dataset = self.base_dataset(
|
|
data_root=osp.join(osp.dirname(__file__), '../data/'),
|
|
data_prefix=dict(img='imgs'),
|
|
ann_file='annotations/dummy_annotation.json')
|
|
assert dataset._fully_initialized
|
|
assert hasattr(dataset, 'data_infos')
|
|
assert hasattr(dataset, 'data_address')
|
|
assert len(dataset) == 4
|
|
assert dataset[0] == dict(imgs=self.imgs)
|
|
assert dataset.get_data_info(0) == self.data_info
|
|
|
|
# set self.base_dataset to initial state
|
|
self.__init__()
|
|
|
|
def test_meta(self):
|
|
# test dataset.meta with setting the meta from annotation file as the
|
|
# meta of self.base_dataset
|
|
dataset = self.base_dataset(
|
|
data_root=osp.join(osp.dirname(__file__), '../data/'),
|
|
data_prefix=dict(img='imgs'),
|
|
ann_file='annotations/dummy_annotation.json')
|
|
assert dataset.meta == dict(
|
|
dataset_type='test_dataset', task_name='test_task')
|
|
|
|
# test dataset.meta with setting META in self.base_dataset
|
|
dataset_type = 'new_dataset'
|
|
self.base_dataset.META = dict(
|
|
dataset_type=dataset_type, classes=('dog', 'cat'))
|
|
|
|
dataset = self.base_dataset(
|
|
data_root=osp.join(osp.dirname(__file__), '../data/'),
|
|
data_prefix=dict(img='imgs'),
|
|
ann_file='annotations/dummy_annotation.json')
|
|
assert dataset.meta == dict(
|
|
dataset_type=dataset_type,
|
|
task_name='test_task',
|
|
classes=('dog', 'cat'))
|
|
|
|
# test dataset.meta with passing meta into self.base_dataset
|
|
meta = dict(classes=('dog', ))
|
|
dataset = self.base_dataset(
|
|
data_root=osp.join(osp.dirname(__file__), '../data/'),
|
|
data_prefix=dict(img='imgs'),
|
|
ann_file='annotations/dummy_annotation.json',
|
|
meta=meta)
|
|
assert self.base_dataset.META == dict(
|
|
dataset_type=dataset_type, classes=('dog', 'cat'))
|
|
assert dataset.meta == dict(
|
|
dataset_type=dataset_type,
|
|
task_name='test_task',
|
|
classes=('dog', ))
|
|
# reset `base_dataset.META`, the `dataset.meta` should not change
|
|
self.base_dataset.META['classes'] = ('dog', 'cat', 'fish')
|
|
assert self.base_dataset.META == dict(
|
|
dataset_type=dataset_type, classes=('dog', 'cat', 'fish'))
|
|
assert dataset.meta == dict(
|
|
dataset_type=dataset_type,
|
|
task_name='test_task',
|
|
classes=('dog', ))
|
|
|
|
# test dataset.meta with passing meta into self.base_dataset and
|
|
# lazy_init is True
|
|
meta = dict(classes=('dog', ))
|
|
dataset = self.base_dataset(
|
|
data_root=osp.join(osp.dirname(__file__), '../data/'),
|
|
data_prefix=dict(img='imgs'),
|
|
ann_file='annotations/dummy_annotation.json',
|
|
meta=meta,
|
|
lazy_init=True)
|
|
# 'task_name' not in dataset.meta
|
|
assert dataset.meta == dict(
|
|
dataset_type=dataset_type, classes=('dog', ))
|
|
|
|
# test whether self.base_dataset.META is changed when a customize
|
|
# dataset inherit self.base_dataset
|
|
# test reset META in ToyDataset.
|
|
class ToyDataset(self.base_dataset):
|
|
META = dict(xxx='xxx')
|
|
|
|
assert ToyDataset.META == dict(xxx='xxx')
|
|
assert self.base_dataset.META == dict(
|
|
dataset_type=dataset_type, classes=('dog', 'cat', 'fish'))
|
|
|
|
# test update META in ToyDataset.
|
|
class ToyDataset(self.base_dataset):
|
|
self.base_dataset.META['classes'] = ('bird', )
|
|
|
|
assert ToyDataset.META == dict(
|
|
dataset_type=dataset_type, classes=('bird', ))
|
|
assert self.base_dataset.META == dict(
|
|
dataset_type=dataset_type, classes=('dog', 'cat', 'fish'))
|
|
|
|
# set self.base_dataset to initial state
|
|
self.__init__()
|
|
|
|
@pytest.mark.parametrize('lazy_init', [True, False])
|
|
def test_length(self, lazy_init):
|
|
dataset = self.base_dataset(
|
|
data_root=osp.join(osp.dirname(__file__), '../data/'),
|
|
data_prefix=dict(img='imgs'),
|
|
ann_file='annotations/dummy_annotation.json',
|
|
lazy_init=lazy_init)
|
|
|
|
if not lazy_init:
|
|
assert dataset._fully_initialized
|
|
assert hasattr(dataset, 'data_infos')
|
|
assert len(dataset) == 2
|
|
else:
|
|
# test `__len__()` when lazy_init is True
|
|
assert not dataset._fully_initialized
|
|
assert not hasattr(dataset, 'data_infos')
|
|
# call `full_init()` automatically
|
|
assert len(dataset) == 2
|
|
assert dataset._fully_initialized
|
|
assert hasattr(dataset, 'data_infos')
|
|
|
|
@pytest.mark.parametrize('lazy_init', [True, False])
|
|
def test_getitem(self, lazy_init):
|
|
dataset = self.base_dataset(
|
|
data_root=osp.join(osp.dirname(__file__), '../data/'),
|
|
data_prefix=dict(img='imgs'),
|
|
ann_file='annotations/dummy_annotation.json',
|
|
lazy_init=lazy_init)
|
|
|
|
if not lazy_init:
|
|
assert dataset._fully_initialized
|
|
assert hasattr(dataset, 'data_infos')
|
|
assert dataset[0] == dict(imgs=self.imgs)
|
|
else:
|
|
# test `__getitem__()` when lazy_init is True
|
|
assert not dataset._fully_initialized
|
|
assert not hasattr(dataset, 'data_infos')
|
|
# call `full_init()` automatically
|
|
assert dataset[0] == dict(imgs=self.imgs)
|
|
assert dataset._fully_initialized
|
|
assert hasattr(dataset, 'data_infos')
|
|
|
|
@pytest.mark.parametrize('lazy_init', [True, False])
|
|
def test_get_data_info(self, lazy_init):
|
|
dataset = self.base_dataset(
|
|
data_root=osp.join(osp.dirname(__file__), '../data/'),
|
|
data_prefix=dict(img='imgs'),
|
|
ann_file='annotations/dummy_annotation.json',
|
|
lazy_init=lazy_init)
|
|
|
|
if not lazy_init:
|
|
assert dataset._fully_initialized
|
|
assert hasattr(dataset, 'data_infos')
|
|
assert dataset.get_data_info(0) == self.data_info
|
|
else:
|
|
# test `get_data_info()` when lazy_init is True
|
|
assert not dataset._fully_initialized
|
|
assert not hasattr(dataset, 'data_infos')
|
|
# call `full_init()` automatically
|
|
assert dataset.get_data_info(0) == self.data_info
|
|
assert dataset._fully_initialized
|
|
assert hasattr(dataset, 'data_infos')
|
|
|
|
@pytest.mark.parametrize('lazy_init', [True, False])
|
|
def test_full_init(self, lazy_init):
|
|
dataset = self.base_dataset(
|
|
data_root=osp.join(osp.dirname(__file__), '../data/'),
|
|
data_prefix=dict(img='imgs'),
|
|
ann_file='annotations/dummy_annotation.json',
|
|
lazy_init=lazy_init)
|
|
|
|
if not lazy_init:
|
|
assert dataset._fully_initialized
|
|
assert hasattr(dataset, 'data_infos')
|
|
assert len(dataset) == 2
|
|
assert dataset[0] == dict(imgs=self.imgs)
|
|
assert dataset.get_data_info(0) == self.data_info
|
|
else:
|
|
# test `full_init()` when lazy_init is True
|
|
assert not dataset._fully_initialized
|
|
assert not hasattr(dataset, 'data_infos')
|
|
# call `full_init()` manually
|
|
dataset.full_init()
|
|
assert dataset._fully_initialized
|
|
assert hasattr(dataset, 'data_infos')
|
|
assert len(dataset) == 2
|
|
assert dataset[0] == dict(imgs=self.imgs)
|
|
assert dataset.get_data_info(0) == self.data_info
|
|
|
|
|
|
class TestConcatDataset:
|
|
|
|
def __init__(self):
|
|
dataset = BaseDataset
|
|
|
|
# create dataset_a
|
|
data_info = dict(filename='test_img.jpg', height=604, width=640)
|
|
dataset.parse_annotations = MagicMock(return_value=data_info)
|
|
imgs = torch.rand((2, 3, 32, 32))
|
|
dataset.pipeline = MagicMock(return_value=dict(imgs=imgs))
|
|
self.dataset_a = dataset(
|
|
data_root=osp.join(osp.dirname(__file__), '../data/'),
|
|
data_prefix=dict(img='imgs'),
|
|
ann_file='annotations/dummy_annotation.json')
|
|
|
|
# create dataset_b
|
|
data_info = dict(filename='gray.jpg', height=288, width=512)
|
|
dataset.parse_annotations = MagicMock(return_value=data_info)
|
|
imgs = torch.rand((2, 3, 32, 32))
|
|
dataset.pipeline = MagicMock(return_value=dict(imgs=imgs))
|
|
self.dataset_b = dataset(
|
|
data_root=osp.join(osp.dirname(__file__), '../data/'),
|
|
data_prefix=dict(img='imgs'),
|
|
ann_file='annotations/dummy_annotation.json',
|
|
meta=dict(classes=('dog', 'cat')))
|
|
|
|
# test init
|
|
self.cat_datasets = ConcatDataset(
|
|
datasets=[self.dataset_a, self.dataset_b])
|
|
|
|
def test_meta(self):
|
|
assert self.cat_datasets.meta == self.dataset_a.meta
|
|
# meta of self.cat_datasets is from the first dataset when
|
|
# concatnating datasets with different metas.
|
|
assert self.cat_datasets.meta != self.dataset_b.meta
|
|
|
|
def test_length(self):
|
|
assert len(self.cat_datasets) == (
|
|
len(self.dataset_a) + len(self.dataset_b))
|
|
|
|
def test_getitem(self):
|
|
assert self.cat_datasets[0] == self.dataset_a[0]
|
|
assert self.cat_datasets[0] != self.dataset_b[0]
|
|
|
|
assert self.cat_datasets[-1] == self.dataset_b[-1]
|
|
assert self.cat_datasets[-1] != self.dataset_a[-1]
|
|
|
|
def test_get_data_info(self):
|
|
assert self.cat_datasets.get_data_info(
|
|
0) == self.dataset_a.get_data_info(0)
|
|
assert self.cat_datasets.get_data_info(
|
|
0) != self.dataset_b.get_data_info(0)
|
|
|
|
assert self.cat_datasets.get_data_info(
|
|
-1) == self.dataset_b.get_data_info(-1)
|
|
assert self.cat_datasets.get_data_info(
|
|
-1) != self.dataset_a[-1].get_data_info(-1)
|
|
|
|
|
|
class TestRepeatDataset:
|
|
|
|
def __init__(self):
|
|
dataset = BaseDataset
|
|
data_info = dict(filename='test_img.jpg', height=604, width=640)
|
|
dataset.parse_annotations = MagicMock(return_value=data_info)
|
|
imgs = torch.rand((2, 3, 32, 32))
|
|
dataset.pipeline = MagicMock(return_value=dict(imgs=imgs))
|
|
self.dataset = dataset(
|
|
data_root=osp.join(osp.dirname(__file__), '../data/'),
|
|
data_prefix=dict(img='imgs'),
|
|
ann_file='annotations/dummy_annotation.json')
|
|
|
|
self.repeat_times = 5
|
|
# test init
|
|
self.repeat_datasets = RepeatDataset(
|
|
dataset=self.dataset, times=self.repeat_times)
|
|
|
|
def test_meta(self):
|
|
assert self.repeat_datasets.meta == self.dataset.meta
|
|
|
|
def test_length(self):
|
|
assert len(
|
|
self.repeat_datasets) == len(self.dataset) * self.repeat_times
|
|
|
|
def test_getitem(self):
|
|
for i in range(self.repeat_times):
|
|
assert self.repeat_datasets[len(self.dataset) *
|
|
i] == self.dataset[0]
|
|
|
|
def test_get_data_info(self):
|
|
for i in range(self.repeat_times):
|
|
assert self.repeat_datasets.get_data_info(
|
|
len(self.dataset) * i) == self.dataset.get_data_info(0)
|
|
|
|
|
|
class TestClassBalancedDataset:
|
|
|
|
def __init__(self):
|
|
dataset = BaseDataset
|
|
data_info = dict(filename='test_img.jpg', height=604, width=640)
|
|
dataset.parse_annotations = MagicMock(return_value=data_info)
|
|
imgs = torch.rand((2, 3, 32, 32))
|
|
dataset.pipeline = MagicMock(return_value=dict(imgs=imgs))
|
|
dataset.get_cat_ids = MagicMock(return_value=[0])
|
|
self.dataset = dataset(
|
|
data_root=osp.join(osp.dirname(__file__), '../data/'),
|
|
data_prefix=dict(img='imgs'),
|
|
ann_file='annotations/dummy_annotation.json')
|
|
|
|
self.repeat_indices = [0, 0, 1, 1, 1]
|
|
# test init
|
|
self.cls_banlanced_datasets = ClassBalancedDataset(
|
|
dataset=self.dataset, oversample_thr=1e-3)
|
|
self.cls_banlanced_datasets.repeat_indices = self.repeat_indices
|
|
|
|
def test_meta(self):
|
|
assert self.cls_banlanced_datasets.meta == self.dataset.meta
|
|
|
|
def test_length(self):
|
|
assert len(self.cls_banlanced_datasets) == len(self.repeat_indices)
|
|
|
|
def test_getitem(self):
|
|
for i in range(len(self.repeat_indices)):
|
|
assert self.cls_banlanced_datasets[i] == self.dataset[
|
|
self.repeat_indices[i]]
|
|
|
|
def test_get_data_info(self):
|
|
for i in range(len(self.repeat_indices)):
|
|
assert self.cls_banlanced_datasets.get_data_info(
|
|
i) == self.dataset.get_data_info(self.repeat_indices[i])
|
|
|
|
def test_get_cat_ids(self):
|
|
for i in range(len(self.repeat_indices)):
|
|
assert self.cls_banlanced_datasets.get_cat_ids(
|
|
i) == self.dataset.get_cat_ids(self.repeat_indices[i])
|