306 lines
14 KiB
Markdown
306 lines
14 KiB
Markdown
<div align="center">
|
||
<img src="https://user-images.githubusercontent.com/58739961/187154444-fce76639-ac8d-429b-9354-c6fac64b7ef8.jpg" width="600"/>
|
||
<div> </div>
|
||
<div align="center">
|
||
<b><font size="5">OpenMMLab 官网</font></b>
|
||
<sup>
|
||
<a href="https://openmmlab.com">
|
||
<i><font size="4">HOT</font></i>
|
||
</a>
|
||
</sup>
|
||
|
||
<b><font size="5">OpenMMLab 开放平台</font></b>
|
||
<sup>
|
||
<a href="https://platform.openmmlab.com">
|
||
<i><font size="4">TRY IT OUT</font></i>
|
||
</a>
|
||
</sup>
|
||
</div>
|
||
<div> </div>
|
||
|
||
[](https://pypi.org/project/mmengine/)
|
||
[](https://pypi.org/project/mmengine)
|
||
[](https://github.com/open-mmlab/mmengine/blob/main/LICENSE)
|
||
[](https://github.com/open-mmlab/mmengine/issues)
|
||
[](https://github.com/open-mmlab/mmengine/issues)
|
||
|
||
[📘使用文档](https://mmengine.readthedocs.io/zh_CN/latest/) |
|
||
[🛠️安装教程](https://mmengine.readthedocs.io/zh_CN/latest/get_started/installation.html) |
|
||
[🤔报告问题](https://github.com/open-mmlab/mmengine/issues/new/choose)
|
||
|
||
</div>
|
||
|
||
<div align="center">
|
||
|
||
[English](README.md) | 简体中文
|
||
|
||
</div>
|
||
|
||
## 简介
|
||
|
||
MMEngine 是一个用于深度学习模型训练的基础库,基于 PyTorch,支持在 Linux、Windows、MacOS 上运行。它具有如下三个亮点:
|
||
|
||
1. 通用:MMEngine 实现了一个高级的通用训练器,它能够:
|
||
|
||
- 支持用少量代码训练不同的任务,例如仅使用 80 行代码就可以训练 imagenet(pytorch example 400 行)
|
||
- 轻松兼容流行的算法库如 TIMM、TorchVision 和 Detectron2 中的模型
|
||
|
||
2. 统一:MMEngine 设计了一个接口统一的开放架构,使得
|
||
|
||
- 用户可以仅依赖一份代码实现所有任务的轻量化,例如 MMRazor 1.x 相比 MMRazor 0.x 优化了 40% 的代码量
|
||
- 上下游的对接更加统一便捷,在为上层算法库提供统一抽象的同时,支持多种后端设备。目前 MMEngine 支持 Nvidia CUDA、Mac MPS、AMD、MLU 等设备进行模型训练。
|
||
|
||
3. 灵活:MMEngine 实现了“乐高”式的训练流程,支持了
|
||
|
||
- 根据迭代数、 loss 和评测结果等动态调整的训练流程、优化策略和数据增强策略,例如早停(early stopping)机制等
|
||
- 任意形式的模型权重平均,如 Exponential Momentum Average (EMA) 和 Stochastic Weight Averaging (SWA)
|
||
- 训练过程中针对任意数据和任意节点的灵活可视化和日志控制
|
||
- 对神经网络模型中各个层的优化配置进行细粒度调整
|
||
- 混合精度训练的灵活控制
|
||
|
||
## 安装
|
||
|
||
在安装 MMengine 之前,请确保 PyTorch 已成功安装在环境中,可以参考 [PyTorch 官方安装文档](https://pytorch.org/get-started/locally/)。
|
||
|
||
安装 MMEngine
|
||
|
||
```bash
|
||
pip install -U openmim
|
||
mim install mmengine
|
||
```
|
||
|
||
验证是否安装成功
|
||
|
||
```bash
|
||
python -c 'from mmengine.utils.dl_utils import collect_env;print(collect_env())'
|
||
```
|
||
|
||
更多安装方式请阅读[安装文档](https://mmengine.readthedocs.io/zh_CN/latest/get_started/installation.html)
|
||
|
||
## 快速上手
|
||
|
||
<details>
|
||
<summary>构建模型</summary>
|
||
|
||
首先,我们需要构建一个**模型**,在 MMEngine 中,我们约定这个模型应当继承 `BaseModel`,并且其 `forward` 方法除了接受来自数据集的若干参数外,
|
||
还需要接受额外的参数 `mode`:对于训练,我们需要 `mode` 接受字符串 "loss",并返回一个包含 "loss" 字段的字典;
|
||
对于验证,我们需要 `mode` 接受字符串 "predict",并返回同时包含预测信息和真实信息的结果。
|
||
|
||
```python
|
||
import torch.nn.functional as F
|
||
import torchvision
|
||
from mmengine.model import BaseModel
|
||
|
||
class MMResNet50(BaseModel):
|
||
def __init__(self):
|
||
super().__init__()
|
||
self.resnet = torchvision.models.resnet50()
|
||
|
||
def forward(self, imgs, labels, mode):
|
||
x = self.resnet(imgs)
|
||
if mode == 'loss':
|
||
return {'loss': F.cross_entropy(x, labels)}
|
||
elif mode == 'predict':
|
||
return x, labels
|
||
```
|
||
|
||
</details>
|
||
|
||
<details>
|
||
<summary>构建数据集</summary>
|
||
|
||
其次,我们需要构建训练和验证所需要的**数据集 (Dataset)**和**数据加载器 (DataLoader)**。
|
||
对于基础的训练和验证功能,我们可以直接使用符合 PyTorch 标准的数据加载器和数据集。
|
||
|
||
```python
|
||
import torchvision.transforms as transforms
|
||
from torch.utils.data import DataLoader
|
||
|
||
norm_cfg = dict(mean=[0.491, 0.482, 0.447], std=[0.202, 0.199, 0.201])
|
||
train_dataloader = DataLoader(batch_size=32,
|
||
shuffle=True,
|
||
dataset=torchvision.datasets.CIFAR10(
|
||
'data/cifar10',
|
||
train=True,
|
||
download=True,
|
||
transform=transforms.Compose([
|
||
transforms.RandomCrop(32, padding=4),
|
||
transforms.RandomHorizontalFlip(),
|
||
transforms.ToTensor(),
|
||
transforms.Normalize(**norm_cfg)
|
||
])))
|
||
val_dataloader = DataLoader(batch_size=32,
|
||
shuffle=False,
|
||
dataset=torchvision.datasets.CIFAR10(
|
||
'data/cifar10',
|
||
train=False,
|
||
download=True,
|
||
transform=transforms.Compose([
|
||
transforms.ToTensor(),
|
||
transforms.Normalize(**norm_cfg)
|
||
])))
|
||
```
|
||
|
||
</details>
|
||
|
||
<details>
|
||
<summary>构建评测指标</summary>
|
||
|
||
为了进行验证和测试,我们需要定义模型推理结果的**评测指标**。我们约定这一评测指标需要继承 `BaseMetric`,
|
||
并实现 `process` 和 `compute_metrics` 方法。
|
||
|
||
```python
|
||
from mmengine.evaluator import BaseMetric
|
||
|
||
class Accuracy(BaseMetric):
|
||
def process(self, data_batch, data_samples):
|
||
score, gt = data_samples
|
||
# 将一个批次的中间结果保存至 `self.results`
|
||
self.results.append({
|
||
'batch_size': len(gt),
|
||
'correct': (score.argmax(dim=1) == gt).sum().cpu(),
|
||
})
|
||
def compute_metrics(self, results):
|
||
total_correct = sum(item['correct'] for item in results)
|
||
total_size = sum(item['batch_size'] for item in results)
|
||
# 返回保存有评测指标结果的字典,其中键为指标名称
|
||
return dict(accuracy=100 * total_correct / total_size)
|
||
```
|
||
|
||
</details>
|
||
|
||
<details>
|
||
<summary>构建执行器</summary>
|
||
|
||
最后,我们利用构建好的**模型**,**数据加载器**,**评测指标**构建一个**执行器 (Runner)**,同时在其中配置
|
||
**优化器**、**工作路径**、**训练与验证配置**等选项
|
||
|
||
```python
|
||
from torch.optim import SGD
|
||
from mmengine.runner import Runner
|
||
|
||
runner = Runner(
|
||
# 用以训练和验证的模型,需要满足特定的接口需求
|
||
model=MMResNet50(),
|
||
# 工作路径,用以保存训练日志、权重文件信息
|
||
work_dir='./work_dir',
|
||
# 训练数据加载器,需要满足 PyTorch 数据加载器协议
|
||
train_dataloader=train_dataloader,
|
||
# 优化器包装,用于模型优化,并提供 AMP、梯度累积等附加功能
|
||
optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
|
||
# 训练配置,用于指定训练周期、验证间隔等信息
|
||
train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1),
|
||
# 验证数据加载器,需要满足 PyTorch 数据加载器协议
|
||
val_dataloader=val_dataloader,
|
||
# 验证配置,用于指定验证所需要的额外参数
|
||
val_cfg=dict(),
|
||
# 用于验证的评测器,这里使用默认评测器,并评测指标
|
||
val_evaluator=dict(type=Accuracy),
|
||
)
|
||
```
|
||
|
||
</details>
|
||
|
||
<details>
|
||
<summary>开始训练</summary>
|
||
|
||
```python
|
||
runner.train()
|
||
```
|
||
|
||
</details>
|
||
|
||
## 了解更多
|
||
|
||
<details>
|
||
<summary>教程</summary>
|
||
|
||
- [注册器](https://mmengine.readthedocs.io/zh_CN/latest/tutorials/registry.html)
|
||
- [配置](https://mmengine.readthedocs.io/zh_CN/latest/tutorials/config.html)
|
||
- [执行器](https://mmengine.readthedocs.io/zh_CN/latest/tutorials/runner.html)
|
||
- [钩子](https://mmengine.readthedocs.io/zh_CN/latest/tutorials/optimizer.html)
|
||
- [优化器](https://mmengine.readthedocs.io/zh_CN/latest/tutorials/param_scheduler.html)
|
||
- [抽象数据接口](https://mmengine.readthedocs.io/zh_CN/latest/tutorials/data_element.html)
|
||
- [数据集基类](https://mmengine.readthedocs.io/zh_CN/latest/tutorials/basedataset.html)
|
||
- [评测指标和评测器](https://mmengine.readthedocs.io/zh_CN/latest/tutorials/metric_and_evaluator.html)
|
||
- [分布式通信原语](https://mmengine.readthedocs.io/zh_CN/latest/tutorials/distributed.html)
|
||
- [记录日志](https://mmengine.readthedocs.io/zh_CN/latest/tutorials/logging.html)
|
||
- [可视化](https://mmengine.readthedocs.io/zh_CN/latest/tutorials/visualization.html)
|
||
|
||
</details>
|
||
|
||
<details>
|
||
<summary>示例</summary>
|
||
|
||
- [加速训练](https://mmengine.readthedocs.io/zh_CN/latest/examples/speed_up_training.html)
|
||
- [恢复训练](https://mmengine.readthedocs.io/zh_CN/latest/examples/resume_training.html)
|
||
- [节省显存](https://mmengine.readthedocs.io/zh_CN/latest/examples/save_gpu_memory.html)
|
||
|
||
</details>
|
||
|
||
<details>
|
||
<summary>架构设计</summary>
|
||
|
||
- [钩子的设计](https://mmengine.readthedocs.io/zh_CN/latest/design/hook.html)
|
||
- [执行器的设计](https://mmengine.readthedocs.io/zh_CN/latest/design/runner.html)
|
||
- [可视化的设计](https://mmengine.readthedocs.io/zh_CN/latest/design/runner.html)
|
||
|
||
</details>
|
||
|
||
<details>
|
||
<summary>迁移指南</summary>
|
||
|
||
- [迁移 MMCV 参数调度器到 MMEngine](https://mmengine.readthedocs.io/zh_CN/latest/migration/migrate_param_scheduler_from_mmcv.html)
|
||
- [迁移 MMCV 钩子到 MMEngine](https://mmengine.readthedocs.io/zh_CN/latest/migration/migrate_hook_from_mmcv.html)
|
||
|
||
</details>
|
||
|
||
## 贡献指南
|
||
|
||
我们感谢所有的贡献者为改进和提升 MMEngine 所作出的努力。请参考[贡献指南](CONTRIBUTING_zh-CN.md)来了解参与项目贡献的相关指引。
|
||
|
||
## 开源许可证
|
||
|
||
该项目采用 [Apache 2.0 license](LICENSE) 开源许可证。
|
||
|
||
## OpenMMLab 的其他项目
|
||
|
||
- [MIM](https://github.com/open-mmlab/mim): MIM 是 OpenMMLab 项目、算法、模型的统一入口
|
||
- [MMCV](https://github.com/open-mmlab/mmcv/tree/dev-2.x): OpenMMLab 计算机视觉基础库
|
||
- [MMClassification](https://github.com/open-mmlab/mmclassification/tree/dev-1.x): OpenMMLab 图像分类工具箱
|
||
- [MMDetection](https://github.com/open-mmlab/mmdetection/tree/dev-3.x): OpenMMLab 目标检测工具箱
|
||
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d/tree/dev-1.x): OpenMMLab 新一代通用 3D 目标检测平台
|
||
- [MMRotate](https://github.com/open-mmlab/mmrotate/tree/dev-1.x): OpenMMLab 旋转框检测工具箱与测试基准
|
||
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation/tree/dev-1.x): OpenMMLab 语义分割工具箱
|
||
- [MMOCR](https://github.com/open-mmlab/mmocr/tree/dev-1.x): OpenMMLab 全流程文字检测识别理解工具包
|
||
- [MMPose](https://github.com/open-mmlab/mmpose/tree/dev-1.x): OpenMMLab 姿态估计工具箱
|
||
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 人体参数化模型工具箱与测试基准
|
||
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup/tree/dev-1.x): OpenMMLab 自监督学习工具箱与测试基准
|
||
- [MMRazor](https://github.com/open-mmlab/mmrazor/tree/dev-1.x): OpenMMLab 模型压缩工具箱与测试基准
|
||
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab 少样本学习工具箱与测试基准
|
||
- [MMAction2](https://github.com/open-mmlab/mmaction2/tree/dev-1.x): OpenMMLab 新一代视频理解工具箱
|
||
- [MMTracking](https://github.com/open-mmlab/mmtracking/tree/dev-1.x): OpenMMLab 一体化视频目标感知平台
|
||
- [MMFlow](https://github.com/open-mmlab/mmflow/tree/dev-1.x): OpenMMLab 光流估计工具箱与测试基准
|
||
- [MMEditing](https://github.com/open-mmlab/mmediting/tree/dev-1.x): OpenMMLab 图像视频编辑工具箱
|
||
- [MMGeneration](https://github.com/open-mmlab/mmgeneration/tree/dev-1.x): OpenMMLab 图片视频生成模型工具箱
|
||
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab 模型部署框架
|
||
|
||
## 欢迎加入 OpenMMLab 社区
|
||
|
||
扫描下方的二维码可关注 OpenMMLab 团队的 [知乎官方账号](https://www.zhihu.com/people/openmmlab),加入 OpenMMLab 团队的 [官方交流 QQ 群](https://jq.qq.com/?_wv=1027&k=aCvMxdr3),或通过添加微信“Open小喵Lab”加入官方交流微信群。
|
||
|
||
<div align="center">
|
||
<img src="https://user-images.githubusercontent.com/58739961/187154320-f3312cdf-31f2-4316-9dbb-8d7b0e1b7e08.jpg" height="400" /> <img src="https://user-images.githubusercontent.com/58739961/187151554-1a0748f0-a1bb-4565-84a6-ab3040247ef1.jpg" height="400" /> <img src="https://user-images.githubusercontent.com/58739961/187151778-d17c1368-125f-4fde-adbe-38cc6eb3be98.jpg" height="400" />
|
||
</div>
|
||
|
||
我们会在 OpenMMLab 社区为大家
|
||
|
||
- 📢 分享 AI 框架的前沿核心技术
|
||
- 💻 解读 PyTorch 常用模块源码
|
||
- 📰 发布 OpenMMLab 的相关新闻
|
||
- 🚀 介绍 OpenMMLab 开发的前沿算法
|
||
- 🏃 获取更高效的问题答疑和意见反馈
|
||
- 🔥 提供与各行各业开发者充分交流的平台
|
||
|
||
干货满满 📘,等你来撩 💗,OpenMMLab 社区期待您的加入 👬
|