6.9 KiB
Model Complexity Analysis
We provide a tool to help with the complexity analysis for the network. We borrow the idea from the implementation of fvcore to build this tool, and plan to support more custom operators in the future. Currently, it provides the interfaces to compute "FLOPs", "Activations" and "Parameters", of the given model, and supports printing the related information layer-by-layer in terms of network structure or table. The analysis tool provides both operator-level and module-level flop counts simultaneously. Please refer to Flop Count for implementation details of how to accurately measure the flops of one operator if interested.
Definition
The model complexity has three indicators, namely floating-point operations (FLOPs), activations, and parameters. Their definitions are as follows:
-
FLOPs
Floating-point operations (FLOPs) is not a clearly defined indicator. Here, we refer to the description in detectron2, which defines a set of multiply-accumulate operations as 1 FLOP.
-
Activations
Activation is used to measure the feature quantity produced from one layer.
-
Parameters
The parameter count of a model.
For example, given an input size of inputs = torch.randn((1, 3, 10, 10))
and a convolutional layer conv = nn.Conv2d(in_channels=3, out_channels=10, kernel_size=3)
, if the output feature map size is (1, 10, 8, 8)
, then its FLOPs are 17280 = 10*8*8*3*3*3
(where 10*8*8
represents the output feature map size, and 3*3*3
represents the computation for each output), activations are 640 = 10*8*8
, and the parameter count is 280 = 3*10*3*3 + 10
(where 3*10*3*3
represents the size of weights, and 10 represents the size of bias).
Usage
Model built with native nn.Module
Build a model
from torch import nn
from mmengine.analysis import get_model_complexity_info
# return a dict of analysis results, including:
# ['flops', 'flops_str', 'activations', 'activations_str', 'params', 'params_str', 'out_table', 'out_arch']
class InnerNet(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(10,10)
self.fc2 = nn.Linear(10,10)
def forward(self, x):
return self.fc1(self.fc2(x))
class TestNet(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(10,10)
self.fc2 = nn.Linear(10,10)
self.inner = InnerNet()
def forward(self, x):
return self.fc1(self.fc2(self.inner(x)))
input_shape = (1, 10)
model = TestNet()
analysis_results = get_model_complexity_info(model, input_shape)
The analysis_results
returned by get_model_complexity_info
is a dict, which contains the following keys:
flops
: number of total flops, e.g., 10000, 10000flops_str
: with formatted string, e.g., 1.0G, 100Mparams
: number of total parameters, e.g., 10000, 10000params_str
: with formatted string, e.g., 1.0G, 100Mactivations
: number of total activations, e.g., 10000, 10000activations_str
: with formatted string, e.g., 1.0G, 100Mout_table
: print related information by table
Print the results
-
print related information by table
print(analysis_results['out_table'])
+---------------------+----------------------+--------+--------------+ | module | #parameters or shape | #flops | #activations | +---------------------+----------------------+--------+--------------+ | model | 0.44K | 0.4K | 40 | | fc1 | 0.11K | 100 | 10 | | fc1.weight | (10, 10) | | | | fc1.bias | (10,) | | | | fc2 | 0.11K | 100 | 10 | | fc2.weight | (10, 10) | | | | fc2.bias | (10,) | | | | inner | 0.22K | 0.2K | 20 | | inner.fc1 | 0.11K | 100 | 10 | | inner.fc1.weight | (10, 10) | | | | inner.fc1.bias | (10,) | | | | inner.fc2 | 0.11K | 100 | 10 | | inner.fc2.weight | (10, 10) | | | | inner.fc2.bias | (10,) | | | +---------------------+----------------------+--------+--------------+
-
print related information by network layers
print(analysis_results['out_arch'])
TestNet( #params: 0.44K, #flops: 0.4K, #acts: 40 (fc1): Linear( in_features=10, out_features=10, bias=True #params: 0.11K, #flops: 100, #acts: 10 ) (fc2): Linear( in_features=10, out_features=10, bias=True #params: 0.11K, #flops: 100, #acts: 10 ) (inner): InnerNet( #params: 0.22K, #flops: 0.2K, #acts: 20 (fc1): Linear( in_features=10, out_features=10, bias=True #params: 0.11K, #flops: 100, #acts: 10 ) (fc2): Linear( in_features=10, out_features=10, bias=True #params: 0.11K, #flops: 100, #acts: 10 ) ) )
-
print results with formatted string
print("Model Flops:{}".format(analysis_results['flops_str'])) # Model Flops:0.4K print("Model Parameters:{}".format(analysis_results['params_str'])) # Model Parameters:0.44K
Model built with mmengine
import torch.nn.functional as F
import torchvision
from mmengine.model import BaseModel
from mmengine.analysis import get_model_complexity_info
class MMResNet50(BaseModel):
def __init__(self):
super().__init__()
self.resnet = torchvision.models.resnet50()
def forward(self, imgs, labels=None, mode='tensor'):
x = self.resnet(imgs)
if mode == 'loss':
return {'loss': F.cross_entropy(x, labels)}
elif mode == 'predict':
return x, labels
elif mode == 'tensor':
return x
input_shape = (3, 224, 224)
model = MMResNet50()
analysis_results = get_model_complexity_info(model, input_shape)
print("Model Flops:{}".format(analysis_results['flops_str']))
# Model Flops:4.145G
print("Model Parameters:{}".format(analysis_results['params_str']))
# Model Parameters:25.557M
Interface
We provide more options to support custom output
model
: (nn.Module) the model to be analyzedinput_shape
: (tuple) the shape of the input, e.g., (3, 224, 224)inputs
: (optional: torch.Tensor), if given,input_shape
will be ignoredshow_table
: (bool) whether return the statistics in the form of table, default: Trueshow_arch
: (bool) whether return the statistics by network layers, default: True