mmengine/tests/test_hooks/test_prepare_tta_hook.py

131 lines
4.3 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import copy
import torch
from torch.utils.data import Dataset
from mmengine.hooks import Hook, PrepareTTAHook
from mmengine.hooks.test_time_aug_hook import build_runner_with_tta
from mmengine.model import BaseModel, BaseTTAModel
from mmengine.registry import DATASETS, MODELS, TRANSFORMS
from mmengine.testing import RunnerTestCase
class ToyDatasetTTA(Dataset):
METAINFO = dict() # type: ignore
data = torch.randn(12, 2)
label = torch.ones(12)
def __init__(self, pipeline):
self.pipeline = TRANSFORMS.build(pipeline)
@property
def metainfo(self):
return self.METAINFO
def __len__(self):
return self.data.size(0)
def __getitem__(self, index):
result = dict(inputs=self.data[index], data_samples=self.label[index])
result = self.pipeline(result)
return result
class ToyModel(BaseModel):
def __init__(self):
super().__init__()
# DDPWrapper requires at least one parameter.
self.linear = torch.nn.Linear(1, 1)
def forward(self, inputs, data_samples, mode='tensor'):
return data_samples
class ToyTestTimeAugModel(BaseTTAModel):
def merge_preds(self, data_samples_list):
result = [sum(x) for x in data_samples_list]
return result
class ToyTTAPipeline:
def __call__(self, result):
return {key: [value] for key, value in result.items()}
class TestPrepareTTAHook(RunnerTestCase):
def setUp(self) -> None:
super().setUp()
TRANSFORMS.register_module(module=ToyTTAPipeline, force=True)
MODELS.register_module(module=ToyModel, force=True)
MODELS.register_module(module=ToyTestTimeAugModel, force=True)
DATASETS.register_module(module=ToyDatasetTTA, force=True)
def tearDown(self):
super().tearDown()
TRANSFORMS.module_dict.pop('ToyTTAPipeline', None)
MODELS.module_dict.pop('ToyModel', None)
MODELS.module_dict.pop('ToyTestTimeAugModel', None)
DATASETS.module_dict.pop('ToyDatasetTTA', None)
def test_init(self):
tta_cfg = dict(type='ToyTTAModel')
prepare_tta_hook = PrepareTTAHook(tta_cfg)
self.assertIsInstance(prepare_tta_hook, Hook)
self.assertIs(tta_cfg, prepare_tta_hook.tta_cfg)
def test_before_test(self):
# Test with epoch based runner.
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.custom_hooks.append(
dict(
type='PrepareTTAHook',
tta_cfg=dict(type='ToyTestTimeAugModel')))
cfg.model = dict(type='ToyModel')
cfg.test_dataloader.dataset = dict(
type='ToyDatasetTTA', pipeline=dict(type='ToyTTAPipeline'))
runner = self.build_runner(cfg)
self.assertNotIsInstance(runner.model, BaseTTAModel)
runner.test()
self.assertIsInstance(runner.model, BaseTTAModel)
# Test with iteration based runner
cfg = copy.deepcopy(self.iter_based_cfg)
cfg.custom_hooks.append(
dict(
type='PrepareTTAHook',
tta_cfg=dict(type='ToyTestTimeAugModel')))
cfg.model = dict(type='ToyModel')
cfg.test_dataloader.dataset = dict(
type='ToyDatasetTTA', pipeline=dict(type='ToyTTAPipeline'))
runner = self.build_runner(cfg)
self.assertNotIsInstance(runner.model, BaseTTAModel)
runner.test()
self.assertIsInstance(runner.model, BaseTTAModel)
# Test with ddp
if torch.cuda.is_available() and torch.distributed.is_nccl_available():
self.setup_dist_env()
cfg.launcher = 'pytorch'
runner = self.build_runner(cfg)
self.assertNotIsInstance(runner.model, BaseTTAModel)
runner.test()
self.assertIsInstance(runner.model, BaseTTAModel)
class TestBuildRunenrWithTTA(TestPrepareTTAHook):
def test_build_runner_with_tta(self):
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.model = dict(type='ToyModel')
cfg.test_dataloader.dataset = dict(type='ToyDatasetTTA')
cfg.tta_pipeline = dict(type='ToyTTAPipeline')
cfg.tta_model = dict(type='ToyTestTimeAugModel')
runner = build_runner_with_tta(cfg)
runner.test()
self.assertIsInstance(runner.model, ToyTestTimeAugModel)