131 lines
4.3 KiB
Python
131 lines
4.3 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import copy
|
|
|
|
import torch
|
|
from torch.utils.data import Dataset
|
|
|
|
from mmengine.hooks import Hook, PrepareTTAHook
|
|
from mmengine.hooks.test_time_aug_hook import build_runner_with_tta
|
|
from mmengine.model import BaseModel, BaseTTAModel
|
|
from mmengine.registry import DATASETS, MODELS, TRANSFORMS
|
|
from mmengine.testing import RunnerTestCase
|
|
|
|
|
|
class ToyDatasetTTA(Dataset):
|
|
METAINFO = dict() # type: ignore
|
|
data = torch.randn(12, 2)
|
|
label = torch.ones(12)
|
|
|
|
def __init__(self, pipeline):
|
|
self.pipeline = TRANSFORMS.build(pipeline)
|
|
|
|
@property
|
|
def metainfo(self):
|
|
return self.METAINFO
|
|
|
|
def __len__(self):
|
|
return self.data.size(0)
|
|
|
|
def __getitem__(self, index):
|
|
result = dict(inputs=self.data[index], data_samples=self.label[index])
|
|
result = self.pipeline(result)
|
|
return result
|
|
|
|
|
|
class ToyModel(BaseModel):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
# DDPWrapper requires at least one parameter.
|
|
self.linear = torch.nn.Linear(1, 1)
|
|
|
|
def forward(self, inputs, data_samples, mode='tensor'):
|
|
return data_samples
|
|
|
|
|
|
class ToyTestTimeAugModel(BaseTTAModel):
|
|
|
|
def merge_preds(self, data_samples_list):
|
|
result = [sum(x) for x in data_samples_list]
|
|
return result
|
|
|
|
|
|
class ToyTTAPipeline:
|
|
|
|
def __call__(self, result):
|
|
return {key: [value] for key, value in result.items()}
|
|
|
|
|
|
class TestPrepareTTAHook(RunnerTestCase):
|
|
|
|
def setUp(self) -> None:
|
|
super().setUp()
|
|
TRANSFORMS.register_module(module=ToyTTAPipeline, force=True)
|
|
MODELS.register_module(module=ToyModel, force=True)
|
|
MODELS.register_module(module=ToyTestTimeAugModel, force=True)
|
|
DATASETS.register_module(module=ToyDatasetTTA, force=True)
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
TRANSFORMS.module_dict.pop('ToyTTAPipeline', None)
|
|
MODELS.module_dict.pop('ToyModel', None)
|
|
MODELS.module_dict.pop('ToyTestTimeAugModel', None)
|
|
DATASETS.module_dict.pop('ToyDatasetTTA', None)
|
|
|
|
def test_init(self):
|
|
tta_cfg = dict(type='ToyTTAModel')
|
|
prepare_tta_hook = PrepareTTAHook(tta_cfg)
|
|
self.assertIsInstance(prepare_tta_hook, Hook)
|
|
self.assertIs(tta_cfg, prepare_tta_hook.tta_cfg)
|
|
|
|
def test_before_test(self):
|
|
# Test with epoch based runner.
|
|
cfg = copy.deepcopy(self.epoch_based_cfg)
|
|
cfg.custom_hooks.append(
|
|
dict(
|
|
type='PrepareTTAHook',
|
|
tta_cfg=dict(type='ToyTestTimeAugModel')))
|
|
cfg.model = dict(type='ToyModel')
|
|
cfg.test_dataloader.dataset = dict(
|
|
type='ToyDatasetTTA', pipeline=dict(type='ToyTTAPipeline'))
|
|
runner = self.build_runner(cfg)
|
|
self.assertNotIsInstance(runner.model, BaseTTAModel)
|
|
runner.test()
|
|
self.assertIsInstance(runner.model, BaseTTAModel)
|
|
|
|
# Test with iteration based runner
|
|
cfg = copy.deepcopy(self.iter_based_cfg)
|
|
cfg.custom_hooks.append(
|
|
dict(
|
|
type='PrepareTTAHook',
|
|
tta_cfg=dict(type='ToyTestTimeAugModel')))
|
|
cfg.model = dict(type='ToyModel')
|
|
cfg.test_dataloader.dataset = dict(
|
|
type='ToyDatasetTTA', pipeline=dict(type='ToyTTAPipeline'))
|
|
runner = self.build_runner(cfg)
|
|
self.assertNotIsInstance(runner.model, BaseTTAModel)
|
|
runner.test()
|
|
self.assertIsInstance(runner.model, BaseTTAModel)
|
|
|
|
# Test with ddp
|
|
if torch.cuda.is_available() and torch.distributed.is_nccl_available():
|
|
self.setup_dist_env()
|
|
cfg.launcher = 'pytorch'
|
|
runner = self.build_runner(cfg)
|
|
self.assertNotIsInstance(runner.model, BaseTTAModel)
|
|
runner.test()
|
|
self.assertIsInstance(runner.model, BaseTTAModel)
|
|
|
|
|
|
class TestBuildRunenrWithTTA(TestPrepareTTAHook):
|
|
|
|
def test_build_runner_with_tta(self):
|
|
cfg = copy.deepcopy(self.epoch_based_cfg)
|
|
cfg.model = dict(type='ToyModel')
|
|
cfg.test_dataloader.dataset = dict(type='ToyDatasetTTA')
|
|
cfg.tta_pipeline = dict(type='ToyTTAPipeline')
|
|
cfg.tta_model = dict(type='ToyTestTimeAugModel')
|
|
runner = build_runner_with_tta(cfg)
|
|
runner.test()
|
|
self.assertIsInstance(runner.model, ToyTestTimeAugModel)
|