mmengine/tests/test_hooks/test_early_stopping_hook.py
Hakjin Lee b3430e4257
[Feature] Support EarlyStoppingHook (#739)
* [Feature] EarlyStoppingHook

* delete redundant line

* Assert stop_training and rename tests

* Fix UT

* rename `metric` to `monitor`

* Fix UT

* Fix UT

* edit docstring on patience

* Draft for new code

* fix ut

* add test case

* add test case

* fix ut

* Apply suggestions from code review

Co-authored-by: Zaida Zhou <58739961+zhouzaida@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Mashiro <57566630+HAOCHENYE@users.noreply.github.com>

* Append hook

* Append hook

* Apply suggestions

* Update suggestions

* Update mmengine/hooks/__init__.py

* fix min_delta

* Apply suggestions from code review

* lint

* Apply suggestions from code review

Co-authored-by: Zaida Zhou <58739961+zhouzaida@users.noreply.github.com>

* delete save_last

* infer rule more robust

* refine unit test

* Update mmengine/hooks/early_stopping_hook.py

---------

Co-authored-by: Zaida Zhou <58739961+zhouzaida@users.noreply.github.com>
Co-authored-by: Mashiro <57566630+HAOCHENYE@users.noreply.github.com>
Co-authored-by: zhouzaida <zhouzaida@163.com>
Co-authored-by: HAOCHENYE <21724054@zju.edu.cn>
2023-03-06 13:18:42 +08:00

256 lines
8.3 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import logging
import math
import os.path as osp
import tempfile
from unittest.mock import Mock
import torch
import torch.nn as nn
from torch.utils.data import Dataset
from mmengine.evaluator import BaseMetric
from mmengine.hooks import EarlyStoppingHook
from mmengine.logging import MMLogger
from mmengine.model import BaseModel
from mmengine.optim import OptimWrapper
from mmengine.runner import Runner
from mmengine.testing import RunnerTestCase
class ToyModel(BaseModel):
def __init__(self):
super().__init__()
self.linear = nn.Linear(2, 1)
def forward(self, inputs, data_sample, mode='tensor'):
labels = torch.stack(data_sample)
inputs = torch.stack(inputs)
outputs = self.linear(inputs)
if mode == 'tensor':
return outputs
elif mode == 'loss':
loss = (labels - outputs).sum()
outputs = dict(loss=loss)
return outputs
else:
return outputs
class DummyDataset(Dataset):
METAINFO = dict() # type: ignore
data = torch.randn(12, 2)
label = torch.ones(12)
@property
def metainfo(self):
return self.METAINFO
def __len__(self):
return self.data.size(0)
def __getitem__(self, index):
return dict(inputs=self.data[index], data_sample=self.label[index])
class DummyMetric(BaseMetric):
default_prefix: str = 'test'
def __init__(self, length):
super().__init__()
self.length = length
self.best_idx = length // 2
self.cur_idx = 0
self.vals = [90, 91, 92, 88, 89, 90] * 2
def process(self, *args, **kwargs):
self.results.append(0)
def compute_metrics(self, *args, **kwargs):
acc = self.vals[self.cur_idx]
self.cur_idx += 1
return dict(acc=acc)
def get_mock_runner():
runner = Mock()
runner.train_loop = Mock()
runner.train_loop.stop_training = False
return runner
class TestEarlyStoppingHook(RunnerTestCase):
def setUp(self):
self.temp_dir = tempfile.TemporaryDirectory()
def tearDown(self):
# `FileHandler` should be closed in Windows, otherwise we cannot
# delete the temporary directory
logging.shutdown()
MMLogger._instance_dict.clear()
self.temp_dir.cleanup()
def test_init(self):
hook = EarlyStoppingHook(monitor='acc')
self.assertEqual(hook.rule, 'greater')
self.assertLess(hook.best_score, 0)
hook = EarlyStoppingHook(monitor='ACC')
self.assertEqual(hook.rule, 'greater')
self.assertLess(hook.best_score, 0)
hook = EarlyStoppingHook(monitor='mAP_50')
self.assertEqual(hook.rule, 'greater')
self.assertLess(hook.best_score, 0)
hook = EarlyStoppingHook(monitor='loss')
self.assertEqual(hook.rule, 'less')
self.assertGreater(hook.best_score, 0)
hook = EarlyStoppingHook(monitor='Loss')
self.assertEqual(hook.rule, 'less')
self.assertGreater(hook.best_score, 0)
hook = EarlyStoppingHook(monitor='ce_loss')
self.assertEqual(hook.rule, 'less')
self.assertGreater(hook.best_score, 0)
with self.assertRaises(ValueError):
# `rule` should be passed.
EarlyStoppingHook(monitor='recall')
with self.assertRaises(ValueError):
# Invalid `rule`
EarlyStoppingHook(monitor='accuracy/top1', rule='the world')
def test_before_run(self):
runner = Mock()
runner.train_loop = object()
# `train_loop` must contain `stop_training` variable.
with self.assertRaises(AssertionError):
hook = EarlyStoppingHook(monitor='accuracy/top1', rule='greater')
hook.before_run(runner)
def test_after_val_epoch(self):
runner = get_mock_runner()
metrics = {'accuracy/top1': 0.5, 'loss': 0.23}
hook = EarlyStoppingHook(monitor='acc', rule='greater')
with self.assertWarns(UserWarning):
# Skip early stopping process since the evaluation results does not
# include the key 'acc'
hook.after_val_epoch(runner, metrics)
# if `monitor` does not match and strict=True, crash the training.
with self.assertRaises(RuntimeError):
metrics = {'accuracy/top1': 0.5, 'loss': 0.23}
hook = EarlyStoppingHook(
monitor='acc', rule='greater', strict=True)
hook.after_val_epoch(runner, metrics)
# Check largest value
runner = get_mock_runner()
metrics = [{'accuracy/top1': i / 9.} for i in range(8)]
hook = EarlyStoppingHook(monitor='accuracy/top1', rule='greater')
for metric in metrics:
hook.after_val_epoch(runner, metric)
if runner.train_loop.stop_training:
break
self.assertAlmostEqual(hook.best_score, 7 / 9)
# Check smallest value
runner = get_mock_runner()
metrics = [{'loss': i / 9.} for i in range(8, 0, -1)]
hook = EarlyStoppingHook(monitor='loss')
for metric in metrics:
hook.after_val_epoch(runner, metric)
if runner.train_loop.stop_training:
break
self.assertAlmostEqual(hook.best_score, 1 / 9)
# Check stop training
runner = get_mock_runner()
metrics = [{'accuracy/top1': i} for i in torch.linspace(98, 99, 8)]
hook = EarlyStoppingHook(
monitor='accuracy/top1', rule='greater', min_delta=1)
for metric in metrics:
hook.after_val_epoch(runner, metric)
if runner.train_loop.stop_training:
break
self.assertTrue(runner.train_loop.stop_training)
# Check finite
runner = get_mock_runner()
metrics = [{'accuracy/top1': math.inf} for i in range(5)]
hook = EarlyStoppingHook(
monitor='accuracy/top1', rule='greater', min_delta=1)
for metric in metrics:
hook.after_val_epoch(runner, metric)
if runner.train_loop.stop_training:
break
self.assertTrue(runner.train_loop.stop_training)
# Check patience
runner = get_mock_runner()
metrics = [{'accuracy/top1': i} for i in torch.linspace(98, 99, 8)]
hook = EarlyStoppingHook(
monitor='accuracy/top1', rule='greater', min_delta=1, patience=10)
for metric in metrics:
hook.after_val_epoch(runner, metric)
if runner.train_loop.stop_training:
break
self.assertFalse(runner.train_loop.stop_training)
# Check stopping_threshold
runner = get_mock_runner()
metrics = [{'accuracy/top1': i} for i in torch.linspace(98, 99, 8)]
hook = EarlyStoppingHook(
monitor='accuracy/top1',
rule='greater',
stopping_threshold=98.5,
patience=0)
for metric in metrics:
hook.after_val_epoch(runner, metric)
if runner.train_loop.stop_training:
break
self.assertAlmostEqual(hook.best_score.item(), 98 + 4 / 7, places=5)
def test_with_runner(self):
max_epoch = 10
work_dir = osp.join(self.temp_dir.name, 'runner_test')
early_stop_cfg = dict(
type='EarlyStoppingHook',
monitor='test/acc',
rule='greater',
min_delta=1,
patience=3,
)
runner = Runner(
model=ToyModel(),
work_dir=work_dir,
train_dataloader=dict(
dataset=DummyDataset(),
sampler=dict(type='DefaultSampler', shuffle=True),
batch_size=3,
num_workers=0),
val_dataloader=dict(
dataset=DummyDataset(),
sampler=dict(type='DefaultSampler', shuffle=False),
batch_size=3,
num_workers=0),
val_evaluator=dict(type=DummyMetric, length=max_epoch),
optim_wrapper=OptimWrapper(
torch.optim.Adam(ToyModel().parameters())),
train_cfg=dict(
by_epoch=True, max_epochs=max_epoch, val_interval=1),
val_cfg=dict(),
custom_hooks=[early_stop_cfg],
experiment_name='earlystop_test')
runner.train()
self.assertEqual(runner.epoch, 6)