1476 lines
44 KiB
Markdown
1476 lines
44 KiB
Markdown
# Migrate Runner from MMCV to MMEngine
|
|
|
|
## Introduction
|
|
|
|
As MMCV supports more and more deep learning tasks, and users' needs become much more complicated, we have higher requirements for the flexibility and versatility of the existing `Runner` of MMCV. Therefore, MMEngine implements a more general and flexible `Runner` based on MMCV to support more complicated training processes.
|
|
|
|
The `Runner` in MMEngine expands the scope and takes on more functions. we abstracted [training loop controller (EpochBasedTrainLoop/IterBasedTrainLoop)](mmengine.runner.EpochBasedTrainLoop), [validation loop controller (ValLoop)](mmengine.runner.ValLoop) and [TestLoop](mmengine.runner.TestLoop) to make it more convenient for users to customize their training process.
|
|
|
|
Firstly, we will introduce how to migrate the entry point of training from MMCV to MMEngine, to simplify and unify the training script. Then, we'll introduce the difference in the instantiation of `Runner` between MMCV and MMEngine in detail.
|
|
|
|
## Migrate the entry point
|
|
|
|
Take MMDet as an example, the differences between training scripts in MMCV and MMEngine are as follows:
|
|
|
|
### Migrate the configuration file
|
|
|
|
<table class="docutils">
|
|
<thead>
|
|
<tr>
|
|
<th>Configuration file based on MMCV Runner </th>
|
|
<th>Configuration file based on MMEngine Runner</th>
|
|
<tbody>
|
|
<tr>
|
|
<td valign="top" class='two-column-table-wrapper' width="50%"><div style="overflow-x: auto">
|
|
|
|
```python
|
|
# default_runtime.py
|
|
checkpoint_config = dict(interval=1)
|
|
log_config = dict(
|
|
interval=50,
|
|
hooks=[
|
|
dict(type='TextLoggerHook'),
|
|
# dict(type='TensorboardLoggerHook')
|
|
])
|
|
custom_hooks = [dict(type='NumClassCheckHook')]
|
|
|
|
dist_params = dict(backend='nccl')
|
|
log_level = 'INFO'
|
|
load_from = None
|
|
resume_from = None
|
|
workflow = [('train', 1)]
|
|
|
|
|
|
opencv_num_threads = 0
|
|
mp_start_method = 'fork'
|
|
auto_scale_lr = dict(enable=False, base_batch_size=16)
|
|
```
|
|
|
|
</div>
|
|
</td>
|
|
<td valign="top" class='two-column-table-wrapper' width="50%"><div style="overflow-x: auto">
|
|
|
|
```python
|
|
# default_runtime.py
|
|
default_scope = 'mmdet'
|
|
|
|
default_hooks = dict(
|
|
timer=dict(type='IterTimerHook'),
|
|
logger=dict(type='LoggerHook', interval=50),
|
|
param_scheduler=dict(type='ParamSchedulerHook'),
|
|
checkpoint=dict(type='CheckpointHook', interval=1),
|
|
sampler_seed=dict(type='DistSamplerSeedHook'),
|
|
visualization=dict(type='DetVisualizationHook'))
|
|
|
|
env_cfg = dict(
|
|
cudnn_benchmark=False,
|
|
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
|
dist_cfg=dict(backend='nccl'),
|
|
)
|
|
|
|
vis_backends = [dict(type='LocalVisBackend')]
|
|
visualizer = dict(
|
|
type='DetLocalVisualizer', vis_backends=vis_backends, name='visualizer')
|
|
log_processor = dict(type='LogProcessor', window_size=50, by_epoch=True)
|
|
|
|
log_level = 'INFO'
|
|
load_from = None
|
|
resume = False
|
|
```
|
|
|
|
</div>
|
|
</td>
|
|
</tr>
|
|
<tr>
|
|
<td valign="top" class='two-column-table-wrapper' width="50%"><div style="overflow-x: auto">
|
|
|
|
```python
|
|
# scheduler.py
|
|
# optimizer
|
|
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
|
|
optimizer_config = dict(grad_clip=None)
|
|
# learning policy
|
|
lr_config = dict(
|
|
policy='step',
|
|
warmup='linear',
|
|
warmup_iters=500,
|
|
warmup_ratio=0.001,
|
|
step=[8, 11])
|
|
runner = dict(type='EpochBasedRunner', max_epochs=12)
|
|
```
|
|
|
|
</div>
|
|
</td>
|
|
<td valign="top" class='two-column-table-wrapper' width="50%"><div style="overflow-x: auto">
|
|
|
|
```python
|
|
# scheduler.py
|
|
# training schedule for 1x
|
|
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=12, val_interval=1)
|
|
val_cfg = dict(type='ValLoop')
|
|
test_cfg = dict(type='TestLoop')
|
|
|
|
# learning rate
|
|
param_scheduler = [
|
|
dict(
|
|
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
|
|
dict(
|
|
type='MultiStepLR',
|
|
begin=0,
|
|
end=12,
|
|
by_epoch=True,
|
|
milestones=[8, 11],
|
|
gamma=0.1)
|
|
]
|
|
|
|
# optimizer
|
|
optim_wrapper = dict(
|
|
type='OptimWrapper',
|
|
optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001))
|
|
|
|
# Default setting for scaling LR automatically
|
|
# - `enable` means enable scaling LR automatically
|
|
# or not by default.
|
|
# - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
|
|
auto_scale_lr = dict(enable=False, base_batch_size=16)
|
|
```
|
|
|
|
</div>
|
|
</td>
|
|
</tr>
|
|
<tr>
|
|
<td valign="top" class='two-column-table-wrapper' width="50%"><div style="overflow-x: auto">
|
|
|
|
```python
|
|
# coco_detection.py
|
|
|
|
# dataset settings
|
|
dataset_type = 'CocoDataset'
|
|
data_root = 'data/coco/'
|
|
img_norm_cfg = dict(
|
|
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
|
train_pipeline = [
|
|
dict(type='LoadImageFromFile'),
|
|
dict(type='LoadAnnotations', with_bbox=True),
|
|
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
|
|
dict(type='RandomFlip', flip_ratio=0.5),
|
|
dict(type='Normalize', **img_norm_cfg),
|
|
dict(type='Pad', size_divisor=32),
|
|
dict(type='DefaultFormatBundle'),
|
|
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
|
|
]
|
|
test_pipeline = [
|
|
dict(type='LoadImageFromFile'),
|
|
dict(
|
|
type='MultiScaleFlipAug',
|
|
img_scale=(1333, 800),
|
|
flip=False,
|
|
transforms=[
|
|
dict(type='Resize', keep_ratio=True),
|
|
dict(type='RandomFlip'),
|
|
dict(type='Normalize', **img_norm_cfg),
|
|
dict(type='Pad', size_divisor=32),
|
|
dict(type='ImageToTensor', keys=['img']),
|
|
dict(type='Collect', keys=['img']),
|
|
])
|
|
]
|
|
data = dict(
|
|
samples_per_gpu=2,
|
|
workers_per_gpu=2,
|
|
train=dict(
|
|
type=dataset_type,
|
|
ann_file=data_root + 'annotations/instances_train2017.json',
|
|
img_prefix=data_root + 'train2017/',
|
|
pipeline=train_pipeline),
|
|
val=dict(
|
|
type=dataset_type,
|
|
ann_file=data_root + 'annotations/instances_val2017.json',
|
|
img_prefix=data_root + 'val2017/',
|
|
pipeline=test_pipeline),
|
|
test=dict(
|
|
type=dataset_type,
|
|
ann_file=data_root + 'annotations/instances_val2017.json',
|
|
img_prefix=data_root + 'val2017/',
|
|
pipeline=test_pipeline))
|
|
evaluation = dict(interval=1, metric='bbox')
|
|
```
|
|
|
|
</div>
|
|
</td>
|
|
<td valign="top" class='two-column-table-wrapper' width="50%"><div style="overflow-x: auto">
|
|
|
|
```python
|
|
# coco_detection.py
|
|
|
|
# dataset settings
|
|
dataset_type = 'CocoDataset'
|
|
data_root = 'data/coco/'
|
|
|
|
file_client_args = dict(backend='disk')
|
|
|
|
train_pipeline = [
|
|
dict(type='LoadImageFromFile', file_client_args=file_client_args),
|
|
dict(type='LoadAnnotations', with_bbox=True),
|
|
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
|
dict(type='RandomFlip', prob=0.5),
|
|
dict(type='PackDetInputs')
|
|
]
|
|
test_pipeline = [
|
|
dict(type='LoadImageFromFile', file_client_args=file_client_args),
|
|
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
|
# If you don't have a gt annotation, delete the pipeline
|
|
dict(type='LoadAnnotations', with_bbox=True),
|
|
dict(
|
|
type='PackDetInputs',
|
|
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
|
'scale_factor'))
|
|
]
|
|
train_dataloader = dict(
|
|
batch_size=2,
|
|
num_workers=2,
|
|
persistent_workers=True,
|
|
sampler=dict(type='DefaultSampler', shuffle=True),
|
|
batch_sampler=dict(type='AspectRatioBatchSampler'),
|
|
dataset=dict(
|
|
type=dataset_type,
|
|
data_root=data_root,
|
|
ann_file='annotations/instances_train2017.json',
|
|
data_prefix=dict(img='train2017/'),
|
|
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
|
pipeline=train_pipeline))
|
|
val_dataloader = dict(
|
|
batch_size=1,
|
|
num_workers=2,
|
|
persistent_workers=True,
|
|
drop_last=False,
|
|
sampler=dict(type='DefaultSampler', shuffle=False),
|
|
dataset=dict(
|
|
type=dataset_type,
|
|
data_root=data_root,
|
|
ann_file='annotations/instances_val2017.json',
|
|
data_prefix=dict(img='val2017/'),
|
|
test_mode=True,
|
|
pipeline=test_pipeline))
|
|
test_dataloader = val_dataloader
|
|
|
|
val_evaluator = dict(
|
|
type='CocoMetric',
|
|
ann_file=data_root + 'annotations/instances_val2017.json',
|
|
metric='bbox',
|
|
format_only=False)
|
|
test_evaluator = val_evaluator
|
|
```
|
|
|
|
</div>
|
|
</td>
|
|
|
|
</tr>
|
|
</thead>
|
|
</table>
|
|
|
|
`Runner` in MMEngine provides more customizable components, including training/validation/testing process and DataLoader. Therefore, the configuration file is a bit longer compared to MMCV.
|
|
|
|
`MMEngine` follows the WYSIWYG principle and reorganizes the hierarchy of each component in configuration so that most of the first-level fields of configuration correspond to the core components in the `Runner`, such as DataLoader, [Evaluator](../tutorials/evaluation.md), [Hook](../tutorials/hook.md), etc. The new format configuration file could help users to read and understand the core components in `Runner`, and ignore the relatively unimportant parts.
|
|
|
|
### Migrate the training script
|
|
|
|
Compared with the `Runner` in MMCV, `Runner` in MMEngine takes on more functions, such as building DataLoader and distributed model. Therefore, we do not need to build the components like DataLoader and distributed model manually anymore. We can configure them during the instantiation of `Runner`, and then build them in the training/validation/testing process. Take the training script of MMDet as an example:
|
|
|
|
<table class="docutils">
|
|
<thead>
|
|
<tr>
|
|
<th>Training script based on MMCV Runner</th>
|
|
<th>Training script based on MMEngine Runner</th>
|
|
<tbody>
|
|
<tr>
|
|
<td valign="top" class='two-column-table-wrapper' width="50%"><div style="overflow-x: auto">
|
|
|
|
```python
|
|
# tools/train.py
|
|
args = parse_args()
|
|
|
|
cfg = Config.fromfile(args.config)
|
|
|
|
# replace the ${key} with the value of cfg.key
|
|
cfg = replace_cfg_vals(cfg)
|
|
|
|
# update data root according to MMDET_DATASETS
|
|
update_data_root(cfg)
|
|
|
|
if args.cfg_options is not None:
|
|
cfg.merge_from_dict(args.cfg_options)
|
|
|
|
if args.auto_scale_lr:
|
|
if 'auto_scale_lr' in cfg and \
|
|
'enable' in cfg.auto_scale_lr and \
|
|
'base_batch_size' in cfg.auto_scale_lr:
|
|
cfg.auto_scale_lr.enable = True
|
|
else:
|
|
warnings.warn('Can not find "auto_scale_lr" or '
|
|
'"auto_scale_lr.enable" or '
|
|
'"auto_scale_lr.base_batch_size" in your'
|
|
' configuration file. Please update all the '
|
|
'configuration files to mmdet >= 2.24.1.')
|
|
|
|
# set multi-process settings
|
|
setup_multi_processes(cfg)
|
|
|
|
# set cudnn_benchmark
|
|
if cfg.get('cudnn_benchmark', False):
|
|
torch.backends.cudnn.benchmark = True
|
|
|
|
# work_dir is determined in this priority: CLI > segment in file > filename
|
|
if args.work_dir is not None:
|
|
# update configs according to CLI args if args.work_dir is not None
|
|
cfg.work_dir = args.work_dir
|
|
elif cfg.get('work_dir', None) is None:
|
|
# use config filename as default work_dir if cfg.work_dir is None
|
|
cfg.work_dir = osp.join('./work_dirs',
|
|
osp.splitext(osp.basename(args.config))[0])
|
|
|
|
if args.resume_from is not None:
|
|
cfg.resume_from = args.resume_from
|
|
cfg.auto_resume = args.auto_resume
|
|
if args.gpus is not None:
|
|
cfg.gpu_ids = range(1)
|
|
warnings.warn('`--gpus` is deprecated because we only support '
|
|
'single GPU mode in non-distributed training. '
|
|
'Use `gpus=1` now.')
|
|
if args.gpu_ids is not None:
|
|
cfg.gpu_ids = args.gpu_ids[0:1]
|
|
warnings.warn('`--gpu-ids` is deprecated, please use `--gpu-id`. '
|
|
'Because we only support single GPU mode in '
|
|
'non-distributed training. Use the first GPU '
|
|
'in `gpu_ids` now.')
|
|
if args.gpus is None and args.gpu_ids is None:
|
|
cfg.gpu_ids = [args.gpu_id]
|
|
|
|
# init distributed env first, since logger depends on the dist info.
|
|
if args.launcher == 'none':
|
|
distributed = False
|
|
else:
|
|
distributed = True
|
|
init_dist(args.launcher, **cfg.dist_params)
|
|
# re-set gpu_ids with distributed training mode
|
|
_, world_size = get_dist_info()
|
|
cfg.gpu_ids = range(world_size)
|
|
|
|
# create work_dir
|
|
mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))
|
|
# dump config
|
|
cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config)))
|
|
# init the logger before other steps
|
|
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
|
|
log_file = osp.join(cfg.work_dir, f'{timestamp}.log')
|
|
logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)
|
|
|
|
# init the meta dict to record some important information such as
|
|
# environment info and seed, which will be logged
|
|
meta = dict()
|
|
# log env info
|
|
env_info_dict = collect_env()
|
|
env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()])
|
|
dash_line = '-' * 60 + '\n'
|
|
logger.info('Environment info:\n' + dash_line + env_info + '\n' +
|
|
dash_line)
|
|
meta['env_info'] = env_info
|
|
meta['config'] = cfg.pretty_text
|
|
# log some basic info
|
|
logger.info(f'Distributed training: {distributed}')
|
|
logger.info(f'Config:\n{cfg.pretty_text}')
|
|
|
|
cfg.device = get_device()
|
|
# set random seeds
|
|
seed = init_random_seed(args.seed, device=cfg.device)
|
|
seed = seed + dist.get_rank() if args.diff_seed else seed
|
|
logger.info(f'Set random seed to {seed}, '
|
|
f'deterministic: {args.deterministic}')
|
|
set_random_seed(seed, deterministic=args.deterministic)
|
|
cfg.seed = seed
|
|
meta['seed'] = seed
|
|
meta['exp_name'] = osp.basename(args.config)
|
|
|
|
model = build_detector(
|
|
cfg.model,
|
|
train_cfg=cfg.get('train_cfg'),
|
|
test_cfg=cfg.get('test_cfg'))
|
|
model.init_weights()
|
|
|
|
datasets = []
|
|
train_detector(
|
|
model,
|
|
datasets,
|
|
cfg,
|
|
distributed=distributed,
|
|
validate=(not args.no_validate),
|
|
timestamp=timestamp,
|
|
meta=meta)
|
|
```
|
|
|
|
</div>
|
|
</td>
|
|
<td valign="top" class='two-column-table-wrapper' width="50%"><div style="overflow-x: auto">
|
|
|
|
```python
|
|
# tools/train.py
|
|
args = parse_args()
|
|
|
|
# register all modules in mmdet into the registries
|
|
# do not init the default scope here because it will be init in the runner
|
|
register_all_modules(init_default_scope=False)
|
|
|
|
# load config
|
|
cfg = Config.fromfile(args.config)
|
|
cfg.launcher = args.launcher
|
|
if args.cfg_options is not None:
|
|
cfg.merge_from_dict(args.cfg_options)
|
|
|
|
# work_dir is determined in this priority: CLI > segment in file > filename
|
|
if args.work_dir is not None:
|
|
# update configs according to CLI args if args.work_dir is not None
|
|
cfg.work_dir = args.work_dir
|
|
elif cfg.get('work_dir', None) is None:
|
|
# use config filename as default work_dir if cfg.work_dir is None
|
|
cfg.work_dir = osp.join('./work_dirs',
|
|
osp.splitext(osp.basename(args.config))[0])
|
|
|
|
# enable automatic-mixed-precision training
|
|
if args.amp is True:
|
|
optim_wrapper = cfg.optim_wrapper.type
|
|
if optim_wrapper == 'AmpOptimWrapper':
|
|
print_log(
|
|
'AMP training is already enabled in your config.',
|
|
logger='current',
|
|
level=logging.WARNING)
|
|
else:
|
|
assert optim_wrapper == 'OptimWrapper', (
|
|
'`--amp` is only supported when the optimizer wrapper type is '
|
|
f'`OptimWrapper` but got {optim_wrapper}.')
|
|
cfg.optim_wrapper.type = 'AmpOptimWrapper'
|
|
cfg.optim_wrapper.loss_scale = 'dynamic'
|
|
|
|
# enable automatically scaling LR
|
|
if args.auto_scale_lr:
|
|
if 'auto_scale_lr' in cfg and \
|
|
'enable' in cfg.auto_scale_lr and \
|
|
'base_batch_size' in cfg.auto_scale_lr:
|
|
cfg.auto_scale_lr.enable = True
|
|
else:
|
|
raise RuntimeError('Can not find "auto_scale_lr" or '
|
|
'"auto_scale_lr.enable" or '
|
|
'"auto_scale_lr.base_batch_size" in your'
|
|
' configuration file.')
|
|
|
|
cfg.resume = args.resume
|
|
|
|
# build the runner from config
|
|
if 'runner_type' not in cfg:
|
|
# build the default runner
|
|
runner = Runner.from_cfg(cfg)
|
|
else:
|
|
# build customized runner from the registry
|
|
# if 'runner_type' is set in the cfg
|
|
runner = RUNNERS.build(cfg)
|
|
|
|
# start training
|
|
runner.train()
|
|
```
|
|
|
|
</div>
|
|
</td>
|
|
</tr>
|
|
<tr>
|
|
<td valign="top" class='two-column-table-wrapper' width="50%"><div style="overflow-x: auto">
|
|
|
|
```python
|
|
# apis/train.py
|
|
def init_random_seed(...):
|
|
...
|
|
|
|
def set_random_seed(...):
|
|
...
|
|
|
|
# define function tools.
|
|
...
|
|
|
|
|
|
def train_detector(model,
|
|
dataset,
|
|
cfg,
|
|
distributed=False,
|
|
validate=False,
|
|
timestamp=None,
|
|
meta=None):
|
|
|
|
cfg = compat_cfg(cfg)
|
|
logger = get_root_logger(log_level=cfg.log_level)
|
|
|
|
# put model on gpus
|
|
if distributed:
|
|
find_unused_parameters = cfg.get('find_unused_parameters', False)
|
|
# Sets the `find_unused_parameters` parameter in
|
|
# torch.nn.parallel.DistributedDataParallel
|
|
model = build_ddp(
|
|
model,
|
|
cfg.device,
|
|
device_ids=[int(os.environ['LOCAL_RANK'])],
|
|
broadcast_buffers=False,
|
|
find_unused_parameters=find_unused_parameters)
|
|
else:
|
|
model = build_dp(model, cfg.device, device_ids=cfg.gpu_ids)
|
|
|
|
# build optimizer
|
|
auto_scale_lr(cfg, distributed, logger)
|
|
optimizer = build_optimizer(model, cfg.optimizer)
|
|
|
|
runner = build_runner(
|
|
cfg.runner,
|
|
default_args=dict(
|
|
model=model,
|
|
optimizer=optimizer,
|
|
work_dir=cfg.work_dir,
|
|
logger=logger,
|
|
meta=meta))
|
|
|
|
# an ugly workaround to make .log and .log.json filenames the same
|
|
runner.timestamp = timestamp
|
|
|
|
# fp16 setting
|
|
fp16_cfg = cfg.get('fp16', None)
|
|
if fp16_cfg is not None:
|
|
optimizer_config = Fp16OptimizerHook(
|
|
**cfg.optimizer_config, **fp16_cfg, distributed=distributed)
|
|
elif distributed and 'type' not in cfg.optimizer_config:
|
|
optimizer_config = OptimizerHook(**cfg.optimizer_config)
|
|
else:
|
|
optimizer_config = cfg.optimizer_config
|
|
|
|
# register hooks
|
|
runner.register_training_hooks(
|
|
cfg.lr_config,
|
|
optimizer_config,
|
|
cfg.checkpoint_config,
|
|
cfg.log_config,
|
|
cfg.get('momentum_config', None),
|
|
custom_hooks_config=cfg.get('custom_hooks', None))
|
|
|
|
if distributed:
|
|
if isinstance(runner, EpochBasedRunner):
|
|
runner.register_hook(DistSamplerSeedHook())
|
|
|
|
# register eval hooks
|
|
if validate:
|
|
val_dataloader_default_args = dict(
|
|
samples_per_gpu=1,
|
|
workers_per_gpu=2,
|
|
dist=distributed,
|
|
shuffle=False,
|
|
persistent_workers=False)
|
|
|
|
val_dataloader_args = {
|
|
**val_dataloader_default_args,
|
|
**cfg.data.get('val_dataloader', {})
|
|
}
|
|
# Support batch_size > 1 in validation
|
|
|
|
if val_dataloader_args['samples_per_gpu'] > 1:
|
|
# Replace 'ImageToTensor' to 'DefaultFormatBundle'
|
|
cfg.data.val.pipeline = replace_ImageToTensor(
|
|
cfg.data.val.pipeline)
|
|
val_dataset = build_dataset(cfg.data.val, dict(test_mode=True))
|
|
|
|
val_dataloader = build_dataloader(val_dataset, **val_dataloader_args)
|
|
eval_cfg = cfg.get('evaluation', {})
|
|
eval_cfg['by_epoch'] = cfg.runner['type'] != 'IterBasedRunner'
|
|
eval_hook = DistEvalHook if distributed else EvalHook
|
|
# In this PR (https://github.com/open-mmlab/mmcv/pull/1193), the
|
|
# priority of IterTimerHook has been modified from 'NORMAL' to 'LOW'.
|
|
runner.register_hook(
|
|
eval_hook(val_dataloader, **eval_cfg), priority='LOW')
|
|
|
|
resume_from = None
|
|
if cfg.resume_from is None and cfg.get('auto_resume'):
|
|
resume_from = find_latest_checkpoint(cfg.work_dir)
|
|
if resume_from is not None:
|
|
cfg.resume_from = resume_from
|
|
|
|
if cfg.resume_from:
|
|
runner.resume(cfg.resume_from)
|
|
elif cfg.load_from:
|
|
runner.load_checkpoint(cfg.load_from)
|
|
runner.run(data_loaders, cfg.workflow)
|
|
```
|
|
|
|
</div>
|
|
</td>
|
|
<td valign="top">
|
|
|
|
```python
|
|
# `apis/train.py` is removed in `mmengine`
|
|
```
|
|
|
|
</td>
|
|
</tr>
|
|
</thead>
|
|
</table>
|
|
|
|
Table above shows the differences between training script of MMEngine `Runner` and MMCV `Runner`. Repositories of OpenMMLab 1.x organize their own process to build `Runner`, which contributes to the large amount of redundant code. MMEngine unifies and formats the building process, such as setting random seed, initializing distributed environment, building DataLoader, building `Optimizer`, etc. This help the downstream repositories simplify the process to prepare the runner, and only need to configure the parameters of `Runner`.
|
|
|
|
For the downstream repositories, training script based on MMEngine Runner not only simplify the `tools/train.py`, but also can directly omit the `apis/train.py`. Similarly, we can also set random seed, initialize distributed environment by configuring the parameters of `Runner`, and do not need to implement the corresponding code.
|
|
|
|
## Migrate Runner
|
|
|
|
This section describes the differences in the training, validation, and testing processes between the MMCV Runner and the MMEngine Runner, as follows.
|
|
|
|
01. [Prepare logger](#prepare-logger)
|
|
02. [Set random seed](#set-random-seed)
|
|
03. [Initialize environment variables](#initialize-environment-variables)
|
|
04. [Prepare data](#prepare-data)
|
|
05. [Prepare model](#prepare-model)
|
|
06. [Prepare optimizer](#prepare-optimizer)
|
|
07. [Prepare hooks](#prepare-hooks)
|
|
08. [Prepare testing/validation components](#prepare-testingvalidation-components)
|
|
09. [Build runner](#build-runner)
|
|
10. [Load checkpoint](#load-checkpoint)
|
|
11. [Training process](#training-process), [Testing process](#testing-process)
|
|
12. [Custom training process](#customize-training-process)
|
|
|
|
The following tutorial will describe the difference above in detail.
|
|
|
|
### Prepare logger
|
|
|
|
**Prepare logger in MMCV**
|
|
|
|
MMCV needs to call the `get_logger` to get a formatted logger and use it to output and log the training information.
|
|
|
|
```python
|
|
logger = get_logger(name='custom', log_file=log_file, log_level=cfg.log_level)
|
|
env_info_dict = collect_env()
|
|
env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()])
|
|
dash_line = '-' * 60 + '\n'
|
|
logger.info('Environment info:\n' + dash_line + env_info + '\n' +
|
|
dash_line)
|
|
```
|
|
|
|
The instantiation of the Runner also relies on the logger:
|
|
|
|
```python
|
|
runner = Runner(
|
|
...
|
|
logger=logger
|
|
...)
|
|
```
|
|
|
|
**Prepare logger in MMEngine**
|
|
|
|
Configure the `log_level` for `Runner`, and it will build the logger automatically.
|
|
|
|
```python
|
|
log_level = 'INFO'
|
|
```
|
|
|
|
### Set random seed
|
|
|
|
**Set random seed in MMCV**
|
|
|
|
Set random seed manually in training script:
|
|
|
|
```python
|
|
...
|
|
seed = init_random_seed(args.seed, device=cfg.device)
|
|
seed = seed + dist.get_rank() if args.diff_seed else seed
|
|
logger.info(f'Set random seed to {seed}, '
|
|
f'deterministic: {args.deterministic}')
|
|
set_random_seed(seed, deterministic=args.deterministic)
|
|
...
|
|
```
|
|
|
|
**Set random seed in MMEngine**
|
|
|
|
Configure the `randomness` for `Runner`, see more information in [Runner.set_randomness](mmengine.runner.Runner.set_randomness)
|
|
|
|
**Configuration changes**
|
|
|
|
<table class="docutils">
|
|
<thead>
|
|
<tr>
|
|
<th>Configuration of MMCV</th>
|
|
<th>Configuration of MMEngine</th>
|
|
<tbody>
|
|
<tr>
|
|
<td valign="top" class='two-column-table-wrapper' width="50%"><div style="overflow-x: auto">
|
|
|
|
```python
|
|
seed = 1
|
|
deterministic=False
|
|
diff_seed=False
|
|
```
|
|
|
|
</div>
|
|
</td>
|
|
<td valign="top" class='two-column-table-wrapper' width="50%"><div style="overflow-x: auto">
|
|
|
|
```python
|
|
randomness=dict(seed=1,
|
|
deterministic=True,
|
|
diff_rank_seed=False)
|
|
```
|
|
|
|
</div>
|
|
</td>
|
|
</tr>
|
|
</thead>
|
|
</table>
|
|
|
|
### Initialize environment variables
|
|
|
|
**Initialize the environment variables**
|
|
|
|
MMCV needs to setup launcher of distributed training, set environment variables for multi-process communication, initialize the distributed environment and wrap model with the distributed wrapper like this:
|
|
|
|
```python
|
|
...
|
|
setup_multi_processes(cfg)
|
|
init_dist(cfg.launcher, **cfg.dist_params)
|
|
model = MMDistributedDataParallel(
|
|
model,
|
|
device_ids=[int(os.environ['LOCAL_RANK'])],
|
|
broadcast_buffers=False,
|
|
find_unused_parameters=find_unused_parameters)
|
|
```
|
|
|
|
As for MMEngine, you can setup launcher by configuring `launcher` of `Runner`, and configure other items mentioned above in `env_cfg`. See more information in the table below:
|
|
|
|
**Configuration changes**
|
|
|
|
<table class="docutils">
|
|
<thead>
|
|
<tr>
|
|
<th>MMCV configuration</th>
|
|
<th>MMEngine configuration</th>
|
|
<tbody>
|
|
<tr>
|
|
<td valign="top" class='two-column-table-wrapper' width="50%"><div style="overflow-x: auto">
|
|
|
|
```python
|
|
launcher = 'pytorch' # enable distributed training
|
|
dist_params = dict(backend='nccl') # choose communication backend
|
|
```
|
|
|
|
</div>
|
|
</td>
|
|
<td valign="top" class='two-column-table-wrapper' width="50%"><div style="overflow-x: auto">
|
|
|
|
```python
|
|
launcher = 'pytorch'
|
|
env_cfg = dict(dist_cfg=dict(backend='nccl'))
|
|
```
|
|
|
|
</div>
|
|
</td>
|
|
</tr>
|
|
</thead>
|
|
</table>
|
|
|
|
In this tutorial, we set `env_cfg` to:
|
|
|
|
```python
|
|
env_cfg = dict(dist_cfg=dict(backend='nccl'))
|
|
```
|
|
|
|
### Prepare data
|
|
|
|
Both MMEngine and MMCV `Runner` can accept built `DataLoader`
|
|
|
|
```python
|
|
import torchvision.transforms as transforms
|
|
from torch.utils.data import DataLoader
|
|
from torchvision.datasets import CIFAR10
|
|
|
|
transform = transforms.Compose([
|
|
transforms.ToTensor(),
|
|
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
|
|
])
|
|
|
|
train_dataset = CIFAR10(
|
|
root='data', train=True, download=True, transform=transform)
|
|
train_dataloader = DataLoader(
|
|
train_dataset, batch_size=128, shuffle=True, num_workers=2)
|
|
|
|
val_dataset = CIFAR10(
|
|
root='data', train=False, download=True, transform=transform)
|
|
val_dataloader = DataLoader(
|
|
val_dataset, batch_size=128, shuffle=False, num_workers=2)
|
|
```
|
|
|
|
**Configuration changes**
|
|
|
|
<table class="docutils">
|
|
<thead>
|
|
<tr>
|
|
<th>Configuration of MMCV</th>
|
|
<th>Configuration of MMEngine</th>
|
|
<tbody>
|
|
<tr>
|
|
<td valign="top" class='two-column-table-wrapper' width="50%"><div style="overflow-x: auto">
|
|
|
|
```python
|
|
data = dict(
|
|
samples_per_gpu=2, # batch_size of single gpu
|
|
workers_per_gpu=2, # num_workers of DataLoader
|
|
train=dict(
|
|
type=dataset_type,
|
|
ann_file=data_root + 'annotations/instances_train2017.json',
|
|
img_prefix=data_root + 'train2017/',
|
|
pipeline=train_pipeline),
|
|
val=dict(
|
|
type=dataset_type,
|
|
ann_file=data_root + 'annotations/instances_val2017.json',
|
|
img_prefix=data_root + 'val2017/',
|
|
pipeline=test_pipeline),
|
|
test=dict(
|
|
type=dataset_type,
|
|
ann_file=data_root + 'annotations/instances_val2017.json',
|
|
img_prefix=data_root + 'val2017/',
|
|
pipeline=test_pipeline))
|
|
```
|
|
|
|
</div>
|
|
</td>
|
|
<td valign="top" class='two-column-table-wrapper' width="50%"><div style="overflow-x: auto">
|
|
|
|
```python
|
|
train_dataloader = dict(
|
|
batch_size=2,
|
|
num_workers=2,
|
|
persistent_workers=True,
|
|
# Configurable sampler
|
|
sampler=dict(type='DefaultSampler', shuffle=True),
|
|
# Configurable batch_sampler
|
|
batch_sampler=dict(type='AspectRatioBatchSampler'),
|
|
dataset=dict(
|
|
type=dataset_type,
|
|
data_root=data_root,
|
|
ann_file='annotations/instances_train2017.json',
|
|
data_prefix=dict(img='train2017/'),
|
|
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
|
pipeline=train_pipeline))
|
|
|
|
val_dataloader = dict(
|
|
batch_size=1, # batch_size of validation process
|
|
num_workers=2,
|
|
persistent_workers=True,
|
|
drop_last=False, # whether drop the last batch
|
|
sampler=dict(type='DefaultSampler', shuffle=False),
|
|
dataset=dict(
|
|
type=dataset_type,
|
|
data_root=data_root,
|
|
ann_file='annotations/instances_val2017.json',
|
|
data_prefix=dict(img='val2017/'),
|
|
test_mode=True,
|
|
pipeline=test_pipeline))
|
|
|
|
test_dataloader = val_dataloader
|
|
```
|
|
|
|
</div>
|
|
</td>
|
|
</tr>
|
|
</thead>
|
|
</table>
|
|
|
|
### Prepare model
|
|
|
|
See [Migrate model from mmcv](./model.md) for more information
|
|
|
|
```python
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from mmengine.model import BaseModel
|
|
|
|
|
|
class Model(BaseModel):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.conv1 = nn.Conv2d(3, 6, 5)
|
|
self.pool = nn.MaxPool2d(2, 2)
|
|
self.conv2 = nn.Conv2d(6, 16, 5)
|
|
self.fc1 = nn.Linear(16 * 5 * 5, 120)
|
|
self.fc2 = nn.Linear(120, 84)
|
|
self.fc3 = nn.Linear(84, 10)
|
|
self.loss_fn = nn.CrossEntropyLoss()
|
|
|
|
def forward(self, img, label, mode):
|
|
feat = self.pool(F.relu(self.conv1(img)))
|
|
feat = self.pool(F.relu(self.conv2(feat)))
|
|
feat = feat.view(-1, 16 * 5 * 5)
|
|
feat = F.relu(self.fc1(feat))
|
|
feat = F.relu(self.fc2(feat))
|
|
feat = self.fc3(feat)
|
|
if mode == 'loss':
|
|
loss = self.loss_fn(feat, label)
|
|
return dict(loss=loss)
|
|
else:
|
|
return [feat.argmax(1)]
|
|
|
|
model = Model()
|
|
```
|
|
|
|
### Prepare optimizer
|
|
|
|
**Prepare optimizer in MMCV**
|
|
|
|
MMCV Runner can accept built optimizer
|
|
|
|
```python
|
|
optimizer = SGD(model.parameters(), lr=0.1, momentum=0.9)
|
|
```
|
|
|
|
For complicated configurations of optimizers, MMCV needs to build optimizers based on the optimizer constructors.
|
|
|
|
```python
|
|
|
|
optimizer_cfg = dict(
|
|
optimizer=dict(type='SGD', lr=0.01, weight_decay=0.0001),
|
|
paramwise_cfg=dict(norm_decay_mult=0))
|
|
|
|
def build_optimizer_constructor(cfg):
|
|
constructor_type = cfg.get('type')
|
|
if constructor_type in OPTIMIZER_BUILDERS:
|
|
return build_from_cfg(cfg, OPTIMIZER_BUILDERS)
|
|
elif constructor_type in MMCV_OPTIMIZER_BUILDERS:
|
|
return build_from_cfg(cfg, MMCV_OPTIMIZER_BUILDERS)
|
|
else:
|
|
raise KeyError(f'{constructor_type} is not registered '
|
|
'in the optimizer builder registry.')
|
|
|
|
|
|
def build_optimizer(model, cfg):
|
|
optimizer_cfg = copy.deepcopy(cfg)
|
|
constructor_type = optimizer_cfg.pop('constructor',
|
|
'DefaultOptimizerConstructor')
|
|
paramwise_cfg = optimizer_cfg.pop('paramwise_cfg', None)
|
|
optim_constructor = build_optimizer_constructor(
|
|
dict(
|
|
type=constructor_type,
|
|
optimizer_cfg=optimizer_cfg,
|
|
paramwise_cfg=paramwise_cfg))
|
|
optimizer = optim_constructor(model)
|
|
return optimizer
|
|
|
|
optimizer = build_optimizer(model, optimizer_cfg)
|
|
```
|
|
|
|
**Prepare optimizer in MMEngine**
|
|
|
|
MMEngine needs to configure [optim_wrapper](mmengine.optim.OptimWrapper) for `Runner`. For more complicated cases, you can also configure the `optim_wrapper` more specifically. See more information in the API [documents](mmengine.runner.Runner.build_optim_wrapper)
|
|
|
|
**Configuration changes**
|
|
|
|
<table class="docutils">
|
|
<thead>
|
|
<tr>
|
|
<th>Configuration in MMCV</th>
|
|
<th>Configuration in MMEngine</th>
|
|
<tbody>
|
|
<tr>
|
|
<td valign="top" class='two-column-table-wrapper' width="50%"><div style="overflow-x: auto">
|
|
|
|
```python
|
|
optimizer = dict(
|
|
constructor='CustomConstructor',
|
|
type='AdamW',
|
|
lr=0.0001,
|
|
betas=(0.9, 0.999),
|
|
weight_decay=0.05,
|
|
paramwise_cfg={ # parameters of constructor
|
|
'decay_rate': 0.95,
|
|
'decay_type': 'layer_wise',
|
|
'num_layers': 6
|
|
})
|
|
|
|
# MMCV needs to configure `optim_config` additionally
|
|
optimizer_config = dict(grad_clip=None)
|
|
```
|
|
|
|
</div>
|
|
</td>
|
|
<td valign="top" class='two-column-table-wrapper' width="50%"><div style="overflow-x: auto">
|
|
|
|
```python
|
|
optim_wrapper = dict(
|
|
constructor='CustomConstructor',
|
|
type='OptimWrapper', # Specify the type of OptimWrapper
|
|
optimizer=dict( # optimizer configuration
|
|
type='AdamW',
|
|
lr=0.0001,
|
|
betas=(0.9, 0.999),
|
|
weight_decay=0.05)
|
|
paramwise_cfg={
|
|
'decay_rate': 0.95,
|
|
'decay_type': 'layer_wise',
|
|
'num_layers': 6
|
|
})
|
|
```
|
|
|
|
</div>
|
|
</td>
|
|
</tr>
|
|
</thead>
|
|
</table>
|
|
|
|
```{note}
|
|
For the high-level tasks like detection and classification, MMCV needs to configure `optim_config` to build `OptimizerHook`, while not necessary for MMEngine.
|
|
```
|
|
|
|
`optim_wrapper` used in this tutorial is as follows:
|
|
|
|
```python
|
|
from torch.optim import SGD
|
|
|
|
optimizer = SGD(model.parameters(), lr=0.1, momentum=0.9)
|
|
optim_wrapper = dict(optimizer=optimizer)
|
|
```
|
|
|
|
### Prepare hooks
|
|
|
|
**Prepare hooks in MMCV**
|
|
|
|
The commonly used hooks configuration in MMCV is as follows:
|
|
|
|
```python
|
|
# learning rate scheduler config
|
|
lr_config = dict(policy='step', step=[2, 3])
|
|
# configuration of optimizer
|
|
optimizer_config = dict(grad_clip=None)
|
|
# configuration of saving checkpoints periodically
|
|
checkpoint_config = dict(interval=1)
|
|
# save log periodically and multiple hooks can be used simultaneously
|
|
log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
|
|
# register hooks to runner and those hooks will be invoked automatically
|
|
runner.register_training_hooks(
|
|
lr_config=lr_config,
|
|
optimizer_config=optimizer_config,
|
|
checkpoint_config=checkpoint_config,
|
|
log_config=log_config)
|
|
```
|
|
|
|
Among them:
|
|
|
|
- `lr_config` is used for `LrUpdaterHook`
|
|
- `optimizer_config` is used for `OptimizerHook`
|
|
- `checkpoint_config` is used for `CheckPointHook`
|
|
- `log_config` is used for `LoggerHook`
|
|
|
|
Besides the hooks mentioned above, MMCV Runner will build `IterTimerHook` automatically. MMCV `Runner` will register the training hooks after instantiating the model, while MMEngine Runner will initialize the hooks during instantiating the model.
|
|
|
|
**Prepare hooks in MMEngine**
|
|
|
|
MMEngine `Runner` takes some commonly used hooks in MMCV as the default hooks.
|
|
|
|
- [RuntimeInfoHook](mmengine.hooks.RuntimeInfoHook)
|
|
- [IterTimerHook](mmengine.hooks.IterTimerHook)
|
|
- [DistSamplerSeedHook](mmengine.hooks.DistSamplerSeedHook)
|
|
- [LoggerHook](mmengine.hooks.LoggerHook)
|
|
- [CheckpointHook](mmengine.hooks.CheckpointHook)
|
|
- [ParamSchedulerHook](mmengine.hooks.ParamSchedulerHook)
|
|
|
|
Compared with the example of MMCV
|
|
|
|
- `LrUpdaterHook` correspond to the `ParamSchedulerHook`, find more details in [migrate scheduler](./param_scheduler.md)
|
|
- MMEngine optimize the model in [train_step](mmengine.model.BaseModel.train_step), therefore we do not need `OptimizerHook` in MMEngine anymore
|
|
- MMEngine takes `CheckPointHook` as the default hook
|
|
- MMEngine take `LoggerHook` as the default hook
|
|
|
|
Therefore, we can achieve the same effect as the MMCV example as long as we configure the [param_scheduler](../tutorials/param_scheduler.md) correctly.
|
|
|
|
We can also register custom hooks in MMEngine runner, find more details in [runner tutorial](../tutorials/runner.md) and [migrate hook](./hook.md).
|
|
|
|
<table class="docutils">
|
|
<thead>
|
|
<tr>
|
|
<th>Commonly used hooks in MMCV</th>
|
|
<th>Default hooks in MMEngine</th>
|
|
<tbody>
|
|
<tr>
|
|
<td valign="top" class='two-column-table-wrapper' width="50%"><div style="overflow-x: auto">
|
|
|
|
```python
|
|
# Configure training hooks
|
|
# Configure LrUpdaterHook
|
|
lr_config = dict(
|
|
policy='step',
|
|
warmup='linear',
|
|
warmup_iters=500,
|
|
warmup_ratio=0.001,
|
|
step=[8, 11])
|
|
|
|
# Configure OptimizerHook
|
|
optimizer_config = dict(grad_clip=None)
|
|
|
|
# Configure LoggerHook
|
|
log_config = dict( # LoggerHook
|
|
interval=50,
|
|
hooks=[
|
|
dict(type='TextLoggerHook'),
|
|
# dict(type='TensorboardLoggerHook')
|
|
])
|
|
|
|
# Configure CheckPointHook
|
|
checkpoint_config = dict(interval=1) # CheckPointHook
|
|
```
|
|
|
|
</div>
|
|
</td>
|
|
<td valign="top" class='two-column-table-wrapper' width="50%"><div style="overflow-x: auto">
|
|
|
|
```python
|
|
# Configure parameter scheduler
|
|
param_scheduler = [
|
|
dict(
|
|
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
|
|
dict(
|
|
type='MultiStepLR',
|
|
begin=0,
|
|
end=12,
|
|
by_epoch=True,
|
|
milestones=[8, 11],
|
|
gamma=0.1)
|
|
]
|
|
|
|
# Configure default hooks
|
|
default_hooks = dict(
|
|
timer=dict(type='IterTimerHook'),
|
|
logger=dict(type='LoggerHook', interval=50),
|
|
param_scheduler=dict(type='ParamSchedulerHook'),
|
|
checkpoint=dict(type='CheckpointHook', interval=1),
|
|
sampler_seed=dict(type='DistSamplerSeedHook'),
|
|
visualization=dict(type='DetVisualizationHook'))
|
|
```
|
|
|
|
</div>
|
|
</td>
|
|
</tr>
|
|
</thead>
|
|
</table>
|
|
|
|
The parameter scheduler used in this tutorial is as follows:
|
|
|
|
```python
|
|
from math import gamma
|
|
|
|
param_scheduler = dict(type='MultiStepLR', milestones=[2, 3], gamma=0.1)
|
|
```
|
|
|
|
### Prepare testing/validation components
|
|
|
|
MMCV implements the validation process by `EvalHook`, and we'll not talk too much about it here. Given that validation is a common process in training, MMEngine abstracts validation as two independent modules: [Evaluator](../tutorials/evaluation.md) and [ValLoop](../tutorials/runner.md). We can customize the metric or the validation process by defining a new [loop](mmengine.runner.ValLoop) or a new [metric](mmengine.evaluator.BaseMetric).
|
|
|
|
```python
|
|
import torch
|
|
from mmengine.evaluator import BaseMetric
|
|
from mmengine.registry import METRICS
|
|
|
|
@METRICS.register_module(force=True)
|
|
class ToyAccuracyMetric(BaseMetric):
|
|
|
|
def process(self, label, pred) -> None:
|
|
self.results.append((label[1], pred, len(label[1])))
|
|
|
|
def compute_metrics(self, results: list) -> dict:
|
|
num_sample = 0
|
|
acc = 0
|
|
for label, pred, batch_size in results:
|
|
acc += (label == torch.stack(pred)).sum()
|
|
num_sample += batch_size
|
|
return dict(Accuracy=acc / num_sample)
|
|
```
|
|
|
|
After defining the metric, we should also configure the evaluator and loop for `Runner`. The example used in this tutorial is as follows:
|
|
|
|
```python
|
|
val_evaluator = dict(type='ToyAccuracyMetric')
|
|
val_cfg = dict(type='ValLoop')
|
|
```
|
|
|
|
<table class="docutils">
|
|
<thead>
|
|
<tr>
|
|
<th>Configure validation in MMCV</th>
|
|
<th>Configure validation in MMEngine</th>
|
|
<tbody>
|
|
<tr>
|
|
<td valign="top" class='two-column-table-wrapper' width="50%"><div style="overflow-x: auto">
|
|
|
|
```python
|
|
eval_cfg = cfg.get('evaluation', {})
|
|
eval_cfg['by_epoch'] = cfg.runner['type'] != 'IterBasedRunner'
|
|
eval_hook = DistEvalHook if distributed else EvalHook
|
|
runner.register_hook(
|
|
eval_hook(val_dataloader, **eval_cfg), priority='LOW')
|
|
```
|
|
|
|
</div>
|
|
</td>
|
|
<td valign="top" class='two-column-table-wrapper' width="50%"><div style="overflow-x: auto">
|
|
|
|
```python
|
|
val_dataloader = val_dataloader
|
|
val_evaluator = dict(type='ToyAccuracyMetric')
|
|
val_cfg = dict(type='ValLoop')
|
|
```
|
|
|
|
</div>
|
|
</td>
|
|
</tr>
|
|
</thead>
|
|
</table>
|
|
|
|
### Build Runner
|
|
|
|
**Building Runner in MMCV**
|
|
|
|
```python
|
|
runner = EpochBasedRunner(
|
|
model=model,
|
|
optimizer=optimizer,
|
|
work_dir=work_dir,
|
|
logger=logger,
|
|
max_epochs=4
|
|
)
|
|
```
|
|
|
|
**Building Runner in MMEngine**
|
|
|
|
The `EpochBasedRunner` and `max_epochs` arguments in `MMCV` are moved to `train_cfg` in MMEngine. All parameters configurable in `train_cfg` are listed below:
|
|
|
|
- by_epoch: `True` equivalent to `EpochBasedRunner`. `False` equivalent to `IterBasedRunner`
|
|
- `max_epoch/max_iter`: Equivalent to `max_epochs` and `max_iters` in MMCV
|
|
- `val_iterval`: Equivalent to `interval` in MMCV
|
|
|
|
```python
|
|
from mmengine.runner import Runner
|
|
|
|
runner = Runner(
|
|
model=model, # model to be optimized
|
|
work_dir='./work_dir', # working directory
|
|
randomness=randomness, # random seed
|
|
env_cfg=env_cfg, # environment config
|
|
launcher='none', # launcher for distributed training
|
|
optim_wrapper=optim_wrapper, # configure optimizer wrapper
|
|
param_scheduler=param_scheduler, # configure parameter scheduler
|
|
train_dataloader=train_dataloader, # configure train dataloader
|
|
train_cfg=dict(by_epoch=True, max_epochs=4, val_interval=1), # Configure training loop
|
|
val_dataloader=val_dataloader, # Configure validation dataloader
|
|
val_evaluator=val_evaluator, # Configure evaluator and metrics
|
|
val_cfg=val_cfg) # Configure validation loop
|
|
```
|
|
|
|
### Load checkpoint
|
|
|
|
**Loading checkpoint in MMCV**
|
|
|
|
```python
|
|
if cfg.resume_from:
|
|
runner.resume(cfg.resume_from)
|
|
elif cfg.load_from:
|
|
runner.load_checkpoint(cfg.load_from)
|
|
```
|
|
|
|
**Loading checkpoint in MMEngine**
|
|
|
|
```python
|
|
runner = Runner(
|
|
...
|
|
load_from='/path/to/checkpoint',
|
|
resume=True
|
|
)
|
|
```
|
|
|
|
<table class="docutils">
|
|
<thead>
|
|
<tr>
|
|
<th>Configuration of loading checkpoint in MMCV</th>
|
|
<th>Configuration of loading checkpoint in MMEngine</th>
|
|
<tbody>
|
|
<tr>
|
|
<td valign="top" class='two-column-table-wrapper' width="50%"><div style="overflow-x: auto">
|
|
|
|
```python
|
|
load_from = 'path/to/ckpt'
|
|
```
|
|
|
|
</td>
|
|
<td valign="top" class='two-column-table-wrapper' width="50%"><div style="overflow-x: auto">
|
|
|
|
```python
|
|
load_from = 'path/to/ckpt'
|
|
resume = False
|
|
```
|
|
|
|
</div>
|
|
</td>
|
|
</tr>
|
|
<tr>
|
|
<td valign="top" class='two-column-table-wrapper' width="50%"><div style="overflow-x: auto">
|
|
|
|
```python
|
|
resume_from = 'path/to/ckpt'
|
|
```
|
|
|
|
</td>
|
|
<td valign="top" class='two-column-table-wrapper' width="50%"><div style="overflow-x: auto">
|
|
|
|
```python
|
|
load_from = 'path/to/ckpt'
|
|
resume = True
|
|
```
|
|
|
|
</div>
|
|
</td>
|
|
</tr>
|
|
</thead>
|
|
</table>
|
|
|
|
### Training process
|
|
|
|
**Training process in MMCV**
|
|
|
|
Resume or load checkpoint firstly, and then start training.
|
|
|
|
```python
|
|
if cfg.resume_from:
|
|
runner.resume(cfg.resume_from)
|
|
elif cfg.load_from:
|
|
runner.load_checkpoint(cfg.load_from)
|
|
runner.run(data_loaders, cfg.workflow)
|
|
```
|
|
|
|
**Training process in MMEngine**
|
|
|
|
Complete the process mentioned above the `Runner.__init__` and `Runner.train`
|
|
|
|
```python
|
|
runner.train()
|
|
```
|
|
|
|
### Testing process
|
|
|
|
Since MMCV Runner does not integrate the test function, we need to implement the test scripts by ourselves.
|
|
|
|
For MMEngine Runner, as long as we have configured the `test_dataloader`, `test_cfg` and `test_evaluator` for the `Runner`, we can call `Runner.test` to start the testing process.
|
|
|
|
**`work_dir` is the same for training**
|
|
|
|
```python
|
|
runner = Runner(
|
|
model=model,
|
|
work_dir='./work_dir',
|
|
randomness=randomness,
|
|
env_cfg=env_cfg,
|
|
launcher='none', # 不开启分布式训练
|
|
optim_wrapper=optim_wrapper,
|
|
train_dataloader=train_dataloader,
|
|
train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1),
|
|
val_dataloader=val_dataloader,
|
|
val_evaluator=val_evaluator,
|
|
val_cfg=val_cfg,
|
|
test_dataloader=val_dataloader, # 假设测试和验证使用相同的数据和评测器
|
|
test_evaluator=val_evaluator,
|
|
test_cfg=dict(type='TestLoop'),
|
|
)
|
|
runner.test()
|
|
```
|
|
|
|
**`work_dir` is the different for training, configure load_from manually**
|
|
|
|
```python
|
|
runner = Runner(
|
|
model=model,
|
|
work_dir='./test_work_dir',
|
|
load_from='./work_dir/epoch_5.pth', # set load_from additionally
|
|
randomness=randomness,
|
|
env_cfg=env_cfg,
|
|
launcher='none',
|
|
optim_wrapper=optim_wrapper,
|
|
train_dataloader=train_dataloader,
|
|
train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1),
|
|
val_dataloader=val_dataloader,
|
|
val_evaluator=val_evaluator,
|
|
val_cfg=val_cfg,
|
|
test_dataloader=val_dataloader,
|
|
test_evaluator=val_evaluator,
|
|
test_cfg=dict(type='TestLoop'),
|
|
)
|
|
runner.test()
|
|
```
|
|
|
|
### Customize training process
|
|
|
|
If we want to customize a training/validation process, we need to override the `Runner.val` or `Runner.train` in a custom `Runner`. Take overriding `runner.train` as an example, suppose we need to train with the same batch twice for each iteration, we can override the `Runner.train` like this:
|
|
|
|
```python
|
|
class CustomRunner(EpochBasedRunner):
|
|
def train(self, data_loader, **kwargs):
|
|
self.model.train()
|
|
self.mode = 'train'
|
|
self.data_loader = data_loader
|
|
self._max_iters = self._max_epochs * len(self.data_loader)
|
|
self.call_hook('before_train_epoch')
|
|
time.sleep(2) # Prevent possible deadlock during epoch transition
|
|
for i, data_batch in enumerate(self.data_loader):
|
|
self.data_batch = data_batch
|
|
self._inner_iter = i
|
|
for _ in range(2)
|
|
self.call_hook('before_train_iter')
|
|
self.run_iter(data_batch, train_mode=True, **kwargs)
|
|
self.call_hook('after_train_iter')
|
|
del self.data_batch
|
|
self._iter += 1
|
|
|
|
self.call_hook('after_train_epoch')
|
|
self._epoch += 1
|
|
```
|
|
|
|
In MMEngine, we need to customize a train loop.
|
|
|
|
```python
|
|
from mmengine.registry import LOOPS
|
|
from mmengine.runner import EpochBasedTrainLoop
|
|
|
|
|
|
@LOOPS.register_module()
|
|
class CustomEpochBasedTrainLoop(EpochBasedTrainLoop):
|
|
def run_iter(self, idx, data_batch) -> None:
|
|
for _ in range(2):
|
|
super().run_iter(idx, data_batch)
|
|
```
|
|
|
|
and then, we need to set `type` as `CustomEpochBasedTrainLoop` in `train_cfg`. Note that `by_epoch` and `type` cannot be configured at the same time. Once `by_epoch` is configured, the type of the training loop will be inferred as `EpochBasedTrainLoop`.
|
|
|
|
```python
|
|
runner = Runner(
|
|
model=model,
|
|
work_dir='./test_work_dir',
|
|
randomness=randomness,
|
|
env_cfg=env_cfg,
|
|
launcher='none',
|
|
optim_wrapper=dict(optimizer=dict(type='SGD', lr=0.001, momentum=0.9)),
|
|
train_dataloader=train_dataloader,
|
|
train_cfg=dict(
|
|
type='CustomEpochBasedTrainLoop',
|
|
max_epochs=5,
|
|
val_interval=1),
|
|
val_dataloader=val_dataloader,
|
|
val_evaluator=val_evaluator,
|
|
val_cfg=val_cfg,
|
|
test_dataloader=val_dataloader,
|
|
test_evaluator=val_evaluator,
|
|
test_cfg=dict(type='TestLoop'),
|
|
)
|
|
runner.train()
|
|
```
|
|
|
|
For more complicated migration needs of `Runner`, you can refer to the [runner tutorials](../tutorials/runner.md) and [runner design](../design/runner.md).
|