mmengine/tests/test_hook/test_optimizer_hook.py
Mashiro 3e3866c1b9
[Feature] Add optimizer wrapper (#265)
* Support multiple optimizers

* minor refinement

* improve unit tests

* minor fix

* Update unit tests for resuming or saving ckpt for multiple optimizers

* refine docstring

* refine docstring

* fix typo

* update docstring

* refactor the logic to build multiple optimizers

* resolve comments

* ParamSchedulers spports multiple optimizers

* add optimizer_wrapper

* fix comment and docstirng

* fix unit test

* add unit test

* refine docstring

* RuntimeInfoHook supports printing multi learning rates

* resolve comments

* add optimizer_wrapper

* fix mypy

* fix lint

* fix OptimizerWrapperDict docstring and add unit test

* rename OptimizerWrapper to OptimWrapper, OptimWrapperDict inherit OptimWrapper, and fix as comment

* Fix AmpOptimizerWrapper

* rename build_optmizer_wrapper to build_optim_wrapper

* refine optimizer wrapper

* fix AmpOptimWrapper.step, docstring

* resolve confict

* rename DefaultOptimConstructor

* fix as comment

* rename clig grad auguments

* refactor optim_wrapper config

* fix docstring of DefaultOptimWrapperConstructor

fix docstring of DefaultOptimWrapperConstructor

* add get_lr method to OptimWrapper and OptimWrapperDict

* skip some amp unit test

* fix unit test

* fix get_lr, get_momentum docstring

* refactor get_lr, get_momentum, fix as comment

* fix error message

Co-authored-by: zhouzaida <zhouzaida@163.com>
2022-06-01 18:04:38 +08:00

116 lines
4.3 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
from unittest.mock import MagicMock, Mock
import torch
from torch import nn
from mmengine.hooks import OptimizerHook
class TestOptimizerHook:
def test_after_train_iter(self):
class Model(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(
in_channels=1,
out_channels=2,
kernel_size=3,
stride=1,
padding=1,
dilation=1)
self.conv2 = nn.Conv2d(
in_channels=2,
out_channels=2,
kernel_size=3,
stride=1,
padding=1,
dilation=1)
self.conv3 = nn.Conv2d(
in_channels=1,
out_channels=2,
kernel_size=3,
stride=1,
padding=1,
dilation=1)
def forward(self, x):
x1 = self.conv1(x)
x2 = self.conv2(x1)
return x1, x2
model = Model()
x = torch.rand(1, 1, 3, 3)
dummy_runner = MagicMock()
dummy_runner.optim_wrapper.zero_grad = Mock(return_value=None)
dummy_runner.optim_wrapper.step = Mock(return_value=None)
dummy_runner.model = model
dummy_runner.outputs = dict()
dummy_runner.outputs['num_samples'] = 0
class DummyLogger():
def __init__(self):
self.msg = ''
def log(self, msg=None, **kwargs):
self.msg += msg
dummy_runner.logger = DummyLogger()
optimizer_hook = OptimizerHook(
dict(max_norm=2), detect_anomalous_params=True)
dummy_runner.outputs['loss'] = model(x)[0].sum()
dummy_runner.outputs['loss'].backward = Mock(
wraps=dummy_runner.outputs['loss'].backward)
optimizer_hook.detect_anomalous_parameters = Mock(
wraps=optimizer_hook.detect_anomalous_parameters)
optimizer_hook.clip_grads = Mock(wraps=optimizer_hook.clip_grads)
optimizer_hook.after_train_iter(dummy_runner, 0)
# assert the parameters of conv2 and conv3 are not in the
# computational graph which is with x1.sum() as root.
assert 'conv2.weight' in dummy_runner.logger.msg
assert 'conv2.bias' in dummy_runner.logger.msg
assert 'conv3.weight' in dummy_runner.logger.msg
assert 'conv3.bias' in dummy_runner.logger.msg
assert 'conv1.weight' not in dummy_runner.logger.msg
assert 'conv1.bias' not in dummy_runner.logger.msg
dummy_runner.optim_wrapper.step.assert_called()
dummy_runner.outputs['loss'].backward.assert_called()
optimizer_hook.clip_grads.assert_called()
optimizer_hook.detect_anomalous_parameters.assert_called()
dummy_runner.outputs['loss'] = model(x)[1].sum()
dummy_runner.logger.msg = ''
optimizer_hook.after_train_iter(dummy_runner, 0)
# assert the parameters of conv3 are not in the computational graph
assert 'conv3.weight' in dummy_runner.logger.msg
assert 'conv3.bias' in dummy_runner.logger.msg
assert 'conv2.weight' not in dummy_runner.logger.msg
assert 'conv2.bias' not in dummy_runner.logger.msg
assert 'conv1.weight' not in dummy_runner.logger.msg
assert 'conv1.bias' not in dummy_runner.logger.msg
# grad_clip is None and detect_anomalous_parameters is False
optimizer_hook = OptimizerHook(detect_anomalous_params=False)
optimizer_hook.detect_anomalous_parameters = Mock(
wraps=optimizer_hook.detect_anomalous_parameters)
optimizer_hook.clip_grads = Mock(wraps=optimizer_hook.clip_grads)
dummy_runner.outputs['loss'] = model(x)[0].sum()
dummy_runner.outputs['loss'].backward = Mock(
wraps=dummy_runner.outputs['loss'].backward)
optimizer_hook.after_train_iter(dummy_runner, 0)
dummy_runner.optim_wrapper.step.assert_called()
dummy_runner.outputs['loss'].backward.assert_called()
optimizer_hook.clip_grads.assert_not_called()
optimizer_hook.detect_anomalous_parameters.assert_not_called()