mmengine/tests/test_optim/test_optimizer/test_optimizer_wrapper.py

388 lines
16 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import os
import unittest
from unittest import TestCase
from unittest.mock import MagicMock
import torch
import torch.distributed as torch_dist
import torch.nn as nn
from torch.cuda.amp import GradScaler
from torch.nn.parallel.distributed import DistributedDataParallel
from torch.optim import SGD, Adam, Optimizer
from mmengine.dist import all_gather
from mmengine.logging import MessageHub, MMLogger
from mmengine.optim import AmpOptimWrapper, OptimWrapper
from mmengine.testing import assert_allclose
from mmengine.testing._internal import MultiProcessTestCase
from mmengine.utils import digit_version
from mmengine.utils.dl_utils import TORCH_VERSION
class ToyModel(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 1, 1)
self.conv2 = nn.Conv2d(1, 1, 1)
self.conv3 = nn.Conv2d(1, 1, 1)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
return x
class ToyModel2(nn.Module):
def __init__(self):
super().__init__()
self.conv = nn.Conv2d(1, 1, 1)
def forward(self, x):
x = self.conv(x)
return x
class TestOptimWrapper(MultiProcessTestCase):
# Test `OptimWrapper.optim_context` will block the gradient
# synchronization when using gradient accumulation strategy in distributed
# data parallel training.
def setUp(self) -> None:
super().setUp()
self._spawn_processes()
def run_test(self, test_name: str, parent_pipe) -> None:
self.model = ToyModel()
self.optimizer = SGD(self.model.parameters(), lr=0.1)
self.logger = MMLogger.get_instance('test_optim_wrapper')
self.message_hub = MessageHub.get_instance('test_optim_wrapper_init')
super().run_test(test_name, parent_pipe)
def test_init(self):
optim_wrapper = OptimWrapper(self.optimizer)
self.assertIs(optim_wrapper.optimizer, self.optimizer)
self.assertIsNone(optim_wrapper.clip_grad_kwargs)
self.assertEqual(optim_wrapper._accumulative_counts, 1)
self.assertIs(optim_wrapper.message_hub, self.message_hub)
self.assertEqual(optim_wrapper._inner_count, 0)
self.assertEqual(optim_wrapper._max_counts, -1)
self.assertEqual(optim_wrapper._remainder_counts, -1)
with self.assertRaisesRegex(AssertionError,
'If `clip_grad` is not None'):
OptimWrapper(self.optimizer, clip_grad=[])
def test_update_params(self):
# Test update params every iteration.
optim_wrapper = OptimWrapper(self.optimizer, accumulative_counts=1)
self._mock_method(optim_wrapper)
loss = torch.tensor(1.)
optim_wrapper.update_params(loss)
self.assertEqual(optim_wrapper.scaled_loss, torch.tensor(1.))
optim_wrapper.step.assert_called_with()
optim_wrapper.zero_grad.assert_called_with()
# Test gradient accumulation.
optim_wrapper = OptimWrapper(self.optimizer, accumulative_counts=3)
self._mock_method(optim_wrapper)
# `iter=0`, accumulate gradient and do not update params.
loss = torch.tensor(1.)
optim_wrapper.update_params(loss)
self.assertEqual(optim_wrapper.scaled_loss, torch.tensor(1.) / 3.)
optim_wrapper.step.assert_not_called()
optim_wrapper.zero_grad.assert_not_called()
# gradient accumulate
optim_wrapper.update_params(loss)
self.assertEqual(optim_wrapper._inner_count, 2.)
# `iter=2`, update params.
optim_wrapper.update_params(loss)
optim_wrapper.step.assert_called()
optim_wrapper.zero_grad.assert_called()
self._mock_method(optim_wrapper)
# Test end of training without calling `initialize_iter_status`
optim_wrapper._inner_count = 99
optim_wrapper.update_params(loss)
optim_wrapper.step.assert_not_called()
optim_wrapper.zero_grad.assert_not_called()
self.assertEqual(optim_wrapper.scaled_loss, torch.tensor(1.) / 3.)
self._mock_method(optim_wrapper)
# After calling `initialize_iter_status`, params will be updated at the
# last iteration, and the `loss_scaler` will be adjusted.
optim_wrapper.initialize_count_status(self.model, 99, 100)
optim_wrapper.update_params(loss)
optim_wrapper.step.assert_called()
optim_wrapper.zero_grad.assert_called()
self.assertEqual(optim_wrapper.scaled_loss, torch.tensor(1.))
self._mock_method(optim_wrapper)
# optim_wrapper.step should not be called at iteration 97 98, and the
# loss factor should be 3 at iteration 99.
optim_wrapper.initialize_count_status(self.model, 96, 100)
for _ in range(2):
optim_wrapper.update_params(loss)
optim_wrapper.step.assert_not_called()
optim_wrapper.zero_grad.assert_not_called()
self.assertEqual(optim_wrapper.scaled_loss, torch.tensor(1.) / 3)
def test_initialize_iter_status(self):
optim_wrapper = OptimWrapper(self.optimizer, accumulative_counts=3)
optim_wrapper.initialize_count_status(self.model, 0, 100)
self.assertEqual(optim_wrapper._remainder_counts, 1)
# Indivisible cur_iter will output warning.
optim_wrapper = OptimWrapper(self.optimizer, accumulative_counts=3)
with self.assertLogs(self.logger) as cm:
optim_wrapper.initialize_count_status(self.model, 2, 100)
self.assertEqual(len(cm.output), 1)
self.assertRegex(cm.records[0].msg, 'Resumed iteration number')
# Model with batch norm will output warning.
optim_wrapper = OptimWrapper(self.optimizer, accumulative_counts=3)
model = nn.BatchNorm2d(1)
with self.assertLogs(self.logger) as cm:
optim_wrapper.initialize_count_status(model, 0, 99)
self.assertEqual(len(cm.output), 1)
self.assertRegex(cm.records[0].msg, 'Gradient accumulative')
def test_ger_lr(self):
model = ToyModel()
optim = SGD(model.parameters(), lr=0.1)
optim_wrapper = OptimWrapper(optim)
self.assertEqual(optim_wrapper.get_lr(), dict(lr=[0.1]))
def test_get_momentum(self):
# Get momentum from SGD
model = ToyModel()
optim = SGD(model.parameters(), lr=0., momentum=0.8)
optim_wrapper = OptimWrapper(optim)
self.assertEqual(optim_wrapper.get_momentum(), dict(momentum=[0.8]))
# Get momentum from Adam
optim = Adam(model.parameters(), lr=0., betas=(0.9, 0.9))
optim_wrapper = OptimWrapper(optim)
self.assertEqual(optim_wrapper.get_momentum(), dict(momentum=[0.9]))
def test_backward(self):
loss = MagicMock()
optim_wrapper = OptimWrapper(self.optimizer)
optim_wrapper.backward(loss)
loss.backward.assert_called()
def test_zero_grad(self):
optimizer = MagicMock(spec=Optimizer)
optim_wrapper = OptimWrapper(optimizer)
optim_wrapper.zero_grad()
optimizer.zero_grad.assert_called()
def test_step(self):
optimizer = MagicMock(spec=Optimizer)
optim_wrapper = OptimWrapper(optimizer)
optim_wrapper.step()
optimizer.step.assert_called()
def test_clip_grads(self):
optim_wrapper = OptimWrapper(
self.optimizer, clip_grad=dict(max_norm=35))
loss = self.model(torch.Tensor(1, 1, 1, 1))
loss.backward()
optim_wrapper._clip_grad()
log_scalars = self.message_hub.log_scalars
self.assertIn('train/grad_norm', log_scalars)
def test_state_dict(self):
optim_wrapper = OptimWrapper(self.optimizer)
self.assertEqual(optim_wrapper.state_dict(),
self.optimizer.state_dict())
def test_load_state_dict(self):
optim_wrapper = OptimWrapper(self.optimizer)
model = ToyModel()
optimizer = SGD(model.parameters(), lr=0.1)
optim_wrapper.load_state_dict(optimizer.state_dict())
self.assertEqual(optim_wrapper.state_dict(), optimizer.state_dict())
def test_param_groups(self):
optim_wrapper = OptimWrapper(self.optimizer)
self.assertEqual(optim_wrapper.param_groups,
self.optimizer.param_groups)
def test_optim_context(self):
self._init_dist_env(self.rank, self.world_size)
model = ToyModel2()
ddp_model = DistributedDataParallel(model)
optimizer = SGD(ddp_model.parameters(), lr=0.01)
optim_wrapper = OptimWrapper(optimizer, accumulative_counts=1)
optim_wrapper.zero_grad()
# Automatically sync grads if `accumulative_counts` = 1
optim_wrapper.initialize_count_status(model, 0, 100)
inputs = torch.randn(1, 1, 1, 1) * self.rank
ddp_model(inputs).sum().backward()
grad = model.conv.weight.grad
all_grads = all_gather(grad)
assert_allclose(all_grads[0], all_grads[1])
# Do not sync grads when `optim_wrapper.cur_iter` cannot be
# divided by `optim_wrapper._accumulative_counts`
optim_wrapper = OptimWrapper(optimizer, accumulative_counts=3)
optim_wrapper.initialize_count_status(model, 0, 100)
with optim_wrapper.optim_context(ddp_model):
loss = ddp_model(inputs).sum()
loss.backward()
all_grads = all_gather(model.conv.weight.grad)
with self.assertRaises(AssertionError):
assert_allclose(all_grads[0], all_grads[1])
# sync grads if `cur_iter == 2`
optim_wrapper.initialize_count_status(model, 2, 100)
with optim_wrapper.optim_context(ddp_model):
loss = ddp_model(inputs).sum()
loss.backward()
all_grads = all_gather(model.conv.weight.grad)
assert_allclose(all_grads[0], all_grads[1])
def _init_dist_env(self, rank, world_size):
"""Initialize the distributed environment."""
os.environ['MASTER_ADDR'] = '127.0.0.1'
os.environ['MASTER_PORT'] = '29515'
os.environ['RANK'] = str(rank)
torch_dist.init_process_group(
backend='gloo', rank=rank, world_size=world_size)
# TODO Test the real interface after add testing tool function which can
# test the function or method is read called.
def _mock_method(self, optim_wrapper):
def mock_methd(loss):
optim_wrapper._inner_count += 1
optim_wrapper.scaled_loss = loss
optim_wrapper.backward = mock_methd
optim_wrapper.step = MagicMock()
optim_wrapper.zero_grad = MagicMock()
class TestAmpOptimWrapper(TestCase):
def setUp(self) -> None:
self.model = ToyModel()
self.optimizer = SGD(self.model.parameters(), lr=0.1)
@unittest.skipIf(
not torch.cuda.is_available()
and (digit_version(TORCH_VERSION) >= digit_version('1.6.0')),
reason='`torch.cuda.amp` is only available when pytorch-gpu version '
'>= 1.6')
def test_init(self):
# Test with default arguments.
amp_optim_wrapper = AmpOptimWrapper(optimizer=self.optimizer)
self.assertIsInstance(amp_optim_wrapper.loss_scaler, GradScaler)
# Test with dynamic.
amp_optim_wrapper = AmpOptimWrapper(
'dynamic', optimizer=self.optimizer)
self.assertIsNone(amp_optim_wrapper._scale_update_param)
self.assertIsInstance(amp_optim_wrapper.loss_scaler, GradScaler)
# Test with dict loss_scale.
amp_optim_wrapper = AmpOptimWrapper(
dict(init_scale=1, growth_factor=2), optimizer=self.optimizer)
self.assertIsInstance(amp_optim_wrapper.loss_scaler, GradScaler)
self.assertIsNone(amp_optim_wrapper._scale_update_param)
with self.assertRaisesRegex(TypeError,
'loss_scale must be of type float'):
AmpOptimWrapper(optimizer=self.optimizer, loss_scale='unknown')
@unittest.skipIf(
not torch.cuda.is_available()
and (digit_version(TORCH_VERSION) >= digit_version('1.6.0')),
reason='`torch.cuda.amp` is only available when pytorch-gpu version '
'>= 1.6')
def test_step(self):
optimizer = MagicMock(spec=Optimizer)
amp_optim_wrapper = AmpOptimWrapper(optimizer=optimizer)
amp_optim_wrapper.loss_scaler = MagicMock()
amp_optim_wrapper.step()
amp_optim_wrapper.loss_scaler.step.assert_called_with(
amp_optim_wrapper.optimizer)
amp_optim_wrapper.loss_scaler.update.assert_called_with(
amp_optim_wrapper._scale_update_param)
@unittest.skipIf(
not torch.cuda.is_available()
and (digit_version(TORCH_VERSION) >= digit_version('1.6.0')),
reason='`torch.cuda.amp` is only available when pytorch-gpu version '
'>= 1.6')
def test_backward(self):
amp_optim_wrapper = AmpOptimWrapper(optimizer=self.optimizer)
loss_scaler = MagicMock()
scale_return = MagicMock()
scale_fn = MagicMock(return_value=scale_return)
loss_scaler.scale = scale_fn
amp_optim_wrapper.loss_scaler = loss_scaler
amp_optim_wrapper.backward(1)
loss_scaler.scale.assert_called_with(1)
scale_return.backward.assert_called_with()
@unittest.skipIf(
not torch.cuda.is_available()
and (digit_version(TORCH_VERSION) >= digit_version('1.6.0')),
reason='`torch.cuda.amp` is only available when pytorch-gpu version '
'>= 1.6')
def test_state_dict(self):
self.model = self.model.cuda()
amp_optim_wrapper = AmpOptimWrapper(optimizer=self.optimizer)
loss = self.model(torch.Tensor(1, 1, 1, 1).cuda())
amp_optim_wrapper.update_params(loss)
state_dict = amp_optim_wrapper.state_dict()
scalar_state_dict = state_dict.pop('loss_scaler')
optim_state_dict = state_dict
self.assertDictEqual(optim_state_dict,
amp_optim_wrapper.optimizer.state_dict())
self.assertDictEqual(scalar_state_dict,
amp_optim_wrapper.loss_scaler.state_dict())
@unittest.skipIf(
not torch.cuda.is_available()
and (digit_version(TORCH_VERSION) >= digit_version('1.6.0')),
reason='`torch.cuda.amp` is only available when pytorch-gpu version '
'>= 1.6')
def test_load_state_dict(self):
amp_optim_wrapper = AmpOptimWrapper(optimizer=self.optimizer)
self.model = self.model.cuda()
# Test load from optimizer
optimizer = SGD(self.model.parameters(), lr=0.1)
amp_optim_wrapper.load_state_dict(optimizer.state_dict())
self.assertDictEqual(optimizer.state_dict(),
amp_optim_wrapper.optimizer.state_dict())
# Test load from optim_wrapper
amp_optim_wrapper = AmpOptimWrapper(optimizer=self.optimizer)
amp_optim_wrapper_ = AmpOptimWrapper(
optimizer=SGD(self.model.parameters(), lr=0.1))
amp_optim_wrapper_.load_state_dict(amp_optim_wrapper.state_dict())
self.assertDictEqual(amp_optim_wrapper.optimizer.state_dict(),
amp_optim_wrapper_.optimizer.state_dict())
self.assertDictEqual(amp_optim_wrapper.loss_scaler.state_dict(),
amp_optim_wrapper_.loss_scaler.state_dict())
@unittest.skipIf(
not torch.cuda.is_available()
and (digit_version(TORCH_VERSION) >= digit_version('1.6.0')),
reason='`torch.cuda.amp` is only available when pytorch-gpu version '
'>= 1.6')
def test_optim_context(self):
amp_optim_wrapper = AmpOptimWrapper(optimizer=self.optimizer)
with amp_optim_wrapper.optim_context(self.model):
x = torch.randn(1, 1, 1, 1).cuda()
y = nn.Conv2d(1, 1, 1).cuda()(x)
self.assertEqual(y.dtype, torch.float16)