mirror of
https://github.com/open-mmlab/mmengine.git
synced 2025-06-03 21:54:44 +08:00
* [Fix] Fix EMAHook trigger train loop init during testing. * fix sync buffer * update ut * fix sync buffer * fix sync buffer
234 lines
9.2 KiB
Python
234 lines
9.2 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import copy
|
|
import itertools
|
|
import logging
|
|
from typing import Dict, Optional
|
|
|
|
from mmengine.logging import print_log
|
|
from mmengine.model import is_model_wrapper
|
|
from mmengine.registry import HOOKS, MODELS
|
|
from .hook import DATA_BATCH, Hook
|
|
|
|
|
|
@HOOKS.register_module()
|
|
class EMAHook(Hook):
|
|
"""A Hook to apply Exponential Moving Average (EMA) on the model during
|
|
training.
|
|
|
|
Note:
|
|
- EMAHook takes priority over CheckpointHook.
|
|
- The original model parameters are actually saved in ema field after
|
|
train.
|
|
- ``begin_iter`` and ``begin_epoch`` cannot be set at the same time.
|
|
|
|
Args:
|
|
ema_type (str): The type of EMA strategy to use. You can find the
|
|
supported strategies in :mod:`mmengine.model.averaged_model`.
|
|
Defaults to 'ExponentialMovingAverage'.
|
|
strict_load (bool): Whether to strictly enforce that the keys of
|
|
``state_dict`` in checkpoint match the keys returned by
|
|
``self.module.state_dict``. Defaults to True.
|
|
begin_iter (int): The number of iteration to enable ``EMAHook``.
|
|
Defaults to 0.
|
|
begin_epoch (int): The number of epoch to enable ``EMAHook``. Defaults
|
|
to 0.
|
|
**kwargs: Keyword arguments passed to subclasses of
|
|
:obj:`BaseAveragedModel`
|
|
"""
|
|
|
|
priority = 'NORMAL'
|
|
|
|
def __init__(self,
|
|
ema_type: str = 'ExponentialMovingAverage',
|
|
strict_load: bool = True,
|
|
begin_iter: int = 0,
|
|
begin_epoch: int = 0,
|
|
**kwargs):
|
|
self.strict_load = strict_load
|
|
self.ema_cfg = dict(type=ema_type, **kwargs)
|
|
assert not (begin_iter != 0 and begin_epoch != 0), (
|
|
'`begin_iter` and `begin_epoch` should not be both set.')
|
|
assert begin_iter >= 0, (
|
|
f'begin_iter must larger than 0, but got begin: {begin_iter}')
|
|
assert begin_epoch >= 0, (
|
|
f'begin_epoch must larger than 0, but got begin: {begin_epoch}')
|
|
self.begin_iter = begin_iter
|
|
self.begin_epoch = begin_epoch
|
|
# If `begin_epoch` and `begin_iter` are not set, `EMAHook` will be
|
|
# enabled at 0 iteration.
|
|
self.enabled_by_epoch = self.begin_epoch > 0
|
|
|
|
def before_run(self, runner) -> None:
|
|
"""Create an ema copy of the model.
|
|
|
|
Args:
|
|
runner (Runner): The runner of the training process.
|
|
"""
|
|
model = runner.model
|
|
if is_model_wrapper(model):
|
|
model = model.module
|
|
self.src_model = model
|
|
self.ema_model = MODELS.build(
|
|
self.ema_cfg, default_args=dict(model=self.src_model))
|
|
|
|
def before_train(self, runner) -> None:
|
|
"""Check the begin_epoch/iter is smaller than max_epochs/iters.
|
|
|
|
Args:
|
|
runner (Runner): The runner of the training process.
|
|
"""
|
|
if self.enabled_by_epoch:
|
|
assert self.begin_epoch <= runner.max_epochs, (
|
|
'self.begin_epoch should be smaller than runner.max_epochs: '
|
|
f'{runner.max_epochs}, but got begin: {self.begin_epoch}')
|
|
else:
|
|
assert self.begin_iter <= runner.max_iters, (
|
|
'self.begin_iter should be smaller than runner.max_iters: '
|
|
f'{runner.max_iters}, but got begin: {self.begin_iter}')
|
|
|
|
def after_train_iter(self,
|
|
runner,
|
|
batch_idx: int,
|
|
data_batch: DATA_BATCH = None,
|
|
outputs: Optional[dict] = None) -> None:
|
|
"""Update ema parameter.
|
|
|
|
Args:
|
|
runner (Runner): The runner of the training process.
|
|
batch_idx (int): The index of the current batch in the train loop.
|
|
data_batch (Sequence[dict], optional): Data from dataloader.
|
|
Defaults to None.
|
|
outputs (dict, optional): Outputs from model. Defaults to None.
|
|
"""
|
|
if self._ema_started(runner):
|
|
self.ema_model.update_parameters(self.src_model)
|
|
else:
|
|
ema_params = self.ema_model.module.state_dict()
|
|
src_params = self.src_model.state_dict()
|
|
for k, p in ema_params.items():
|
|
p.data.copy_(src_params[k].data)
|
|
|
|
def before_val_epoch(self, runner) -> None:
|
|
"""We load parameter values from ema model to source model before
|
|
validation.
|
|
|
|
Args:
|
|
runner (Runner): The runner of the training process.
|
|
"""
|
|
self._swap_ema_parameters()
|
|
|
|
def after_val_epoch(self,
|
|
runner,
|
|
metrics: Optional[Dict[str, float]] = None) -> None:
|
|
"""We recover source model's parameter from ema model after validation.
|
|
|
|
Args:
|
|
runner (Runner): The runner of the validation process.
|
|
metrics (Dict[str, float], optional): Evaluation results of all
|
|
metrics on validation dataset. The keys are the names of the
|
|
metrics, and the values are corresponding results.
|
|
"""
|
|
self._swap_ema_parameters()
|
|
|
|
def before_test_epoch(self, runner) -> None:
|
|
"""We load parameter values from ema model to source model before test.
|
|
|
|
Args:
|
|
runner (Runner): The runner of the training process.
|
|
"""
|
|
self._swap_ema_parameters()
|
|
|
|
def after_test_epoch(self,
|
|
runner,
|
|
metrics: Optional[Dict[str, float]] = None) -> None:
|
|
"""We recover source model's parameter from ema model after test.
|
|
|
|
Args:
|
|
runner (Runner): The runner of the testing process.
|
|
metrics (Dict[str, float], optional): Evaluation results of all
|
|
metrics on test dataset. The keys are the names of the
|
|
metrics, and the values are corresponding results.
|
|
"""
|
|
self._swap_ema_parameters()
|
|
|
|
def before_save_checkpoint(self, runner, checkpoint: dict) -> None:
|
|
"""Save ema parameters to checkpoint.
|
|
|
|
Args:
|
|
runner (Runner): The runner of the testing process.
|
|
"""
|
|
checkpoint['ema_state_dict'] = self.ema_model.state_dict()
|
|
# Save ema parameters to the source model's state dict so that we
|
|
# can directly load the averaged model weights for deployment.
|
|
# Swapping the state_dict key-values instead of swapping model
|
|
# parameters because the state_dict is a shallow copy of model
|
|
# parameters.
|
|
self._swap_ema_state_dict(checkpoint)
|
|
|
|
def after_load_checkpoint(self, runner, checkpoint: dict) -> None:
|
|
"""Resume ema parameters from checkpoint.
|
|
|
|
Args:
|
|
runner (Runner): The runner of the testing process.
|
|
"""
|
|
if 'ema_state_dict' in checkpoint:
|
|
# The original model parameters are actually saved in ema
|
|
# field swap the weights back to resume ema state.
|
|
self._swap_ema_state_dict(checkpoint)
|
|
self.ema_model.load_state_dict(
|
|
checkpoint['ema_state_dict'], strict=self.strict_load)
|
|
|
|
# Support load checkpoint without ema state dict.
|
|
else:
|
|
print_log(
|
|
'There is no `ema_state_dict` in checkpoint. '
|
|
'`EMAHook` will make a copy of `state_dict` as the '
|
|
'initial `ema_state_dict`', 'current', logging.WARNING)
|
|
self.ema_model.module.load_state_dict(
|
|
copy.deepcopy(checkpoint['state_dict']),
|
|
strict=self.strict_load)
|
|
|
|
def _swap_ema_parameters(self) -> None:
|
|
"""Swap the parameter of model with ema_model."""
|
|
avg_param = (
|
|
itertools.chain(self.ema_model.module.parameters(),
|
|
self.ema_model.module.buffers())
|
|
if self.ema_model.update_buffers else
|
|
self.ema_model.module.parameters())
|
|
src_param = (
|
|
itertools.chain(self.src_model.parameters(),
|
|
self.src_model.buffers())
|
|
if self.ema_model.update_buffers else self.src_model.parameters())
|
|
for p_avg, p_src in zip(avg_param, src_param):
|
|
tmp = p_avg.data.clone()
|
|
p_avg.data.copy_(p_src.data)
|
|
p_src.data.copy_(tmp)
|
|
|
|
def _swap_ema_state_dict(self, checkpoint):
|
|
"""Swap the state dict values of model with ema_model."""
|
|
model_state = checkpoint['state_dict']
|
|
ema_state = checkpoint['ema_state_dict']
|
|
for k in ema_state:
|
|
if k[:7] == 'module.':
|
|
tmp = ema_state[k]
|
|
ema_state[k] = model_state[k[7:]]
|
|
model_state[k[7:]] = tmp
|
|
|
|
def _ema_started(self, runner) -> bool:
|
|
"""Whether ``EMAHook`` has been initialized at current iteration or
|
|
epoch.
|
|
|
|
:attr:`ema_model` will be initialized when ``runner.iter`` or
|
|
``runner.epoch`` is greater than ``self.begin`` for the first time.
|
|
|
|
Args:
|
|
runner (Runner): Runner of the training, validation process.
|
|
|
|
Returns:
|
|
bool: Whether ``EMAHook`` has been initialized.
|
|
"""
|
|
if self.enabled_by_epoch:
|
|
return runner.epoch + 1 >= self.begin_epoch
|
|
else:
|
|
return runner.iter + 1 >= self.begin_iter
|