mmengine/tests/test_logging/test_message_hub.py

202 lines
8.1 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import pickle
from collections import OrderedDict
import numpy as np
import pytest
from mmengine.logging import HistoryBuffer, MessageHub
from mmengine.utils import is_installed
class NoDeepCopy:
def __deepcopy__(self, memodict={}):
raise NotImplementedError
class TestMessageHub:
def test_init(self):
message_hub = MessageHub('name')
assert message_hub.instance_name == 'name'
assert len(message_hub.log_scalars) == 0
assert len(message_hub.log_scalars) == 0
# The type of log_scalars's value must be `HistoryBuffer`.
with pytest.raises(AssertionError):
MessageHub('hello', log_scalars=OrderedDict(a=1))
# `Resumed_keys`
with pytest.raises(AssertionError):
MessageHub(
'hello',
runtime_info=OrderedDict(iter=1),
resumed_keys=OrderedDict(iters=False))
def test_update_scalar(self):
message_hub = MessageHub.get_instance('mmengine')
# Update scalar with int.
message_hub.update_scalar('name', 1)
log_buffer = message_hub.log_scalars['name']
assert (log_buffer._log_history == np.array([1])).all()
# Update scalar with np.ndarray.
message_hub.update_scalar('name', np.array(1))
assert (log_buffer._log_history == np.array([1, 1])).all()
# Update scalar with np.int
message_hub.update_scalar('name', np.int32(1))
assert (log_buffer._log_history == np.array([1, 1, 1])).all()
def test_update_info(self):
message_hub = MessageHub.get_instance('mmengine')
# test runtime value can be overwritten.
message_hub.update_info('key', 2)
assert message_hub.runtime_info['key'] == 2
message_hub.update_info('key', 1)
assert message_hub.runtime_info['key'] == 1
def test_update_infos(self):
message_hub = MessageHub.get_instance('mmengine')
# test runtime value can be overwritten.
message_hub.update_info_dict({'a': 2, 'b': 3})
assert message_hub.runtime_info['a'] == 2
assert message_hub.runtime_info['b'] == 3
assert message_hub._resumed_keys['a']
assert message_hub._resumed_keys['b']
def test_get_scalar(self):
message_hub = MessageHub.get_instance('mmengine')
# Get undefined key will raise error
with pytest.raises(KeyError):
message_hub.get_scalar('unknown')
# test get log_buffer as wished
log_history = np.array([1, 2, 3, 4, 5])
count = np.array([1, 1, 1, 1, 1])
for i in range(len(log_history)):
message_hub.update_scalar('test_value', float(log_history[i]),
int(count[i]))
recorded_history, recorded_count = \
message_hub.get_scalar('test_value').data
assert (log_history == recorded_history).all()
assert (recorded_count == count).all()
def test_get_runtime(self):
message_hub = MessageHub.get_instance('mmengine')
assert message_hub.get_info('unknown') is None
recorded_dict = dict(a=1, b=2)
message_hub.update_info('test_value', recorded_dict)
assert message_hub.get_info('test_value') == recorded_dict
@pytest.mark.skipif(not is_installed('torch'), reason='requires torch')
def test_get_scalars(self):
import torch
message_hub = MessageHub.get_instance('mmengine')
log_dict = dict(
loss=1,
loss_cls=torch.tensor(2),
loss_bbox=np.array(3),
loss_iou=dict(value=1, count=2))
message_hub.update_scalars(log_dict)
loss = message_hub.get_scalar('loss')
loss_cls = message_hub.get_scalar('loss_cls')
loss_bbox = message_hub.get_scalar('loss_bbox')
loss_iou = message_hub.get_scalar('loss_iou')
assert loss.current() == 1
assert loss_cls.current() == 2
assert loss_bbox.current() == 3
assert loss_iou.mean() == 0.5
with pytest.raises(AssertionError):
loss_dict = dict(error_type=[])
message_hub.update_scalars(loss_dict)
with pytest.raises(AssertionError):
loss_dict = dict(error_type=dict(count=1))
message_hub.update_scalars(loss_dict)
def test_state_dict(self):
message_hub = MessageHub.get_instance('test_state_dict')
# update log_scalars.
message_hub.update_scalar('loss', 0.1)
message_hub.update_scalar('lr', 0.1, resumed=False)
# update runtime information
message_hub.update_info('iter', 1, resumed=True)
message_hub.update_info('tensor', [1, 2, 3], resumed=False)
no_copy = NoDeepCopy()
message_hub.update_info('no_copy', no_copy, resumed=True)
state_dict = message_hub.state_dict()
assert state_dict['log_scalars']['loss'].data == (np.array([0.1]),
np.array([1]))
assert 'lr' not in state_dict['log_scalars']
assert state_dict['runtime_info']['iter'] == 1
assert 'tensor' not in state_dict['runtime_info']
assert state_dict['runtime_info']['no_copy'] is no_copy
def test_load_state_dict(self, capsys):
message_hub1 = MessageHub.get_instance('test_load_state_dict1')
# update log_scalars.
message_hub1.update_scalar('loss', 0.1)
message_hub1.update_scalar('lr', 0.1, resumed=False)
# update runtime information
message_hub1.update_info('iter', 1, resumed=True)
message_hub1.update_info('tensor', [1, 2, 3], resumed=False)
state_dict = message_hub1.state_dict()
# Resume from state_dict
message_hub2 = MessageHub.get_instance('test_load_state_dict2')
message_hub2.load_state_dict(state_dict)
assert message_hub2.get_scalar('loss').data == (np.array([0.1]),
np.array([1]))
assert message_hub2.get_info('iter') == 1
# Test resume from `MessageHub` instance.
message_hub3 = MessageHub.get_instance('test_load_state_dict3')
message_hub3.load_state_dict(state_dict)
assert message_hub3.get_scalar('loss').data == (np.array([0.1]),
np.array([1]))
assert message_hub3.get_info('iter') == 1
# Test resume custom state_dict
state_dict = OrderedDict()
state_dict['log_scalars'] = dict(a=1, b=HistoryBuffer())
state_dict['runtime_info'] = dict(c=1, d=NoDeepCopy(), e=1)
state_dict['resumed_keys'] = dict(
a=True, b=True, c=True, e=False, f=True)
message_hub4 = MessageHub.get_instance('test_load_state_dict4')
message_hub4.load_state_dict(state_dict)
assert 'a' not in message_hub4.log_scalars and 'b' in \
message_hub4.log_scalars
assert 'c' in message_hub4.runtime_info and \
state_dict['runtime_info']['d'] is \
message_hub4.runtime_info['d']
assert message_hub4._resumed_keys == OrderedDict(
b=True, c=True, e=False)
def test_getstate(self):
message_hub = MessageHub.get_instance('name')
# update log_scalars.
message_hub.update_scalar('loss', 0.1)
message_hub.update_scalar('lr', 0.1, resumed=False)
# update runtime information
message_hub.update_info('iter', 1, resumed=True)
message_hub.update_info('tensor', [1, 2, 3], resumed=False)
obj = pickle.dumps(message_hub)
instance = pickle.loads(obj)
assert instance.get_info('feat') is None
assert instance.get_info('lr') is None
instance.get_info('iter')
instance.get_scalar('loss')
def test_get_instance(self):
# Test get root mmengine message hub.
MessageHub._instance_dict = OrderedDict()
message_hub = MessageHub.get_current_instance()
assert id(MessageHub.get_instance('mmengine')) == id(message_hub)
# Test original `get_current_instance` function.
MessageHub.get_instance('mmdet')
assert MessageHub.get_current_instance().instance_name == 'mmdet'