mmengine/tests/test_hooks/test_runtime_info_hook.py

134 lines
5.0 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import copy
from unittest.mock import Mock
import torch.nn as nn
from torch.optim import SGD
from mmengine.hooks import RuntimeInfoHook
from mmengine.optim import OptimWrapper, OptimWrapperDict
from mmengine.registry import DATASETS
from mmengine.testing import RunnerTestCase
class DatasetWithoutMetainfo:
...
def __len__(self):
return 12
class DatasetWithMetainfo(DatasetWithoutMetainfo):
metainfo: dict = dict()
class TestRuntimeInfoHook(RunnerTestCase):
def setUp(self) -> None:
DATASETS.register_module(module=DatasetWithoutMetainfo, force=True)
DATASETS.register_module(module=DatasetWithMetainfo, force=True)
return super().setUp()
def tearDown(self):
DATASETS.module_dict.pop('DatasetWithoutMetainfo')
DATASETS.module_dict.pop('DatasetWithMetainfo')
return super().tearDown()
def test_before_train(self):
cfg = copy.deepcopy(self.epoch_based_cfg)
cfg.train_dataloader.dataset.type = 'DatasetWithoutMetainfo'
runner = self.build_runner(cfg)
hook = self._get_runtime_info_hook(runner)
hook.before_train(runner)
self.assertEqual(runner.message_hub.get_info('epoch'), 0)
self.assertEqual(runner.message_hub.get_info('iter'), 0)
self.assertEqual(runner.message_hub.get_info('max_epochs'), 2)
self.assertEqual(runner.message_hub.get_info('max_iters'), 8)
with self.assertRaisesRegex(KeyError, 'dataset_meta is not found'):
runner.message_hub.get_info('dataset_meta')
cfg.train_dataloader.dataset.type = 'DatasetWithMetainfo'
runner = self.build_runner(cfg)
hook.before_train(runner)
self.assertEqual(runner.message_hub.get_info('dataset_meta'), dict())
def test_before_train_epoch(self):
cfg = copy.deepcopy(self.epoch_based_cfg)
runner = self.build_runner(cfg)
runner.train_loop._epoch = 9
hook = self._get_runtime_info_hook(runner)
hook.before_train_epoch(runner)
self.assertEqual(runner.message_hub.get_info('epoch'), 9)
def test_before_train_iter(self):
# single optimizer
cfg = copy.deepcopy(self.epoch_based_cfg)
lr = cfg.optim_wrapper.optimizer.lr
runner = self.build_runner(cfg)
# set iter
runner.train_loop._iter = 9
# build optim wrapper
runner.optim_wrapper = runner.build_optim_wrapper(runner.optim_wrapper)
hook = self._get_runtime_info_hook(runner)
hook.before_train_iter(runner, batch_idx=2, data_batch=None)
self.assertEqual(runner.message_hub.get_info('iter'), 9)
self.assertEqual(
runner.message_hub.get_scalar('train/lr').current(), lr)
with self.assertRaisesRegex(AssertionError,
'runner.optim_wrapper.get_lr()'):
runner.optim_wrapper = Mock()
runner.optim_wrapper.get_lr = Mock(return_value='error type')
hook.before_train_iter(runner, batch_idx=2, data_batch=None)
# multiple optimizers
model = nn.ModuleDict(
dict(
layer1=nn.Linear(1, 1),
layer2=nn.Linear(1, 1),
))
optim1 = SGD(model.layer1.parameters(), lr=0.01)
optim2 = SGD(model.layer2.parameters(), lr=0.02)
optim_wrapper1 = OptimWrapper(optim1)
optim_wrapper2 = OptimWrapper(optim2)
optim_wrapper_dict = OptimWrapperDict(
key1=optim_wrapper1, key2=optim_wrapper2)
runner.optim_wrapper = optim_wrapper_dict
hook.before_train_iter(runner, batch_idx=2, data_batch=None)
self.assertEqual(
runner.message_hub.get_scalar('train/key1.lr').current(), 0.01)
self.assertEqual(
runner.message_hub.get_scalar('train/key2.lr').current(), 0.02)
def test_after_train_iter(self):
cfg = copy.deepcopy(self.epoch_based_cfg)
runner = self.build_runner(cfg)
hook = self._get_runtime_info_hook(runner)
hook.after_train_iter(
runner, batch_idx=2, data_batch=None, outputs={'loss_cls': 1.111})
self.assertEqual(
runner.message_hub.get_scalar('train/loss_cls').current(), 1.111)
def test_after_val_epoch(self):
cfg = copy.deepcopy(self.epoch_based_cfg)
runner = self.build_runner(cfg)
hook = self._get_runtime_info_hook(runner)
hook.after_val_epoch(runner, metrics={'acc': 0.8})
self.assertEqual(
runner.message_hub.get_scalar('val/acc').current(), 0.8)
def test_after_test_epoch(self):
cfg = copy.deepcopy(self.epoch_based_cfg)
runner = self.build_runner(cfg)
hook = self._get_runtime_info_hook(runner)
hook.after_test_epoch(runner, metrics={'acc': 0.8})
self.assertEqual(
runner.message_hub.get_scalar('test/acc').current(), 0.8)
def _get_runtime_info_hook(self, runner):
for hook in runner.hooks:
if isinstance(hook, RuntimeInfoHook):
return hook