134 lines
5.0 KiB
Python
134 lines
5.0 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import copy
|
|
from unittest.mock import Mock
|
|
|
|
import torch.nn as nn
|
|
from torch.optim import SGD
|
|
|
|
from mmengine.hooks import RuntimeInfoHook
|
|
from mmengine.optim import OptimWrapper, OptimWrapperDict
|
|
from mmengine.registry import DATASETS
|
|
from mmengine.testing import RunnerTestCase
|
|
|
|
|
|
class DatasetWithoutMetainfo:
|
|
...
|
|
|
|
def __len__(self):
|
|
return 12
|
|
|
|
|
|
class DatasetWithMetainfo(DatasetWithoutMetainfo):
|
|
metainfo: dict = dict()
|
|
|
|
|
|
class TestRuntimeInfoHook(RunnerTestCase):
|
|
|
|
def setUp(self) -> None:
|
|
DATASETS.register_module(module=DatasetWithoutMetainfo, force=True)
|
|
DATASETS.register_module(module=DatasetWithMetainfo, force=True)
|
|
return super().setUp()
|
|
|
|
def tearDown(self):
|
|
DATASETS.module_dict.pop('DatasetWithoutMetainfo')
|
|
DATASETS.module_dict.pop('DatasetWithMetainfo')
|
|
return super().tearDown()
|
|
|
|
def test_before_train(self):
|
|
|
|
cfg = copy.deepcopy(self.epoch_based_cfg)
|
|
cfg.train_dataloader.dataset.type = 'DatasetWithoutMetainfo'
|
|
runner = self.build_runner(cfg)
|
|
hook = self._get_runtime_info_hook(runner)
|
|
hook.before_train(runner)
|
|
self.assertEqual(runner.message_hub.get_info('epoch'), 0)
|
|
self.assertEqual(runner.message_hub.get_info('iter'), 0)
|
|
self.assertEqual(runner.message_hub.get_info('max_epochs'), 2)
|
|
self.assertEqual(runner.message_hub.get_info('max_iters'), 8)
|
|
|
|
with self.assertRaisesRegex(KeyError, 'dataset_meta is not found'):
|
|
runner.message_hub.get_info('dataset_meta')
|
|
|
|
cfg.train_dataloader.dataset.type = 'DatasetWithMetainfo'
|
|
runner = self.build_runner(cfg)
|
|
hook.before_train(runner)
|
|
self.assertEqual(runner.message_hub.get_info('dataset_meta'), dict())
|
|
|
|
def test_before_train_epoch(self):
|
|
cfg = copy.deepcopy(self.epoch_based_cfg)
|
|
runner = self.build_runner(cfg)
|
|
runner.train_loop._epoch = 9
|
|
hook = self._get_runtime_info_hook(runner)
|
|
hook.before_train_epoch(runner)
|
|
self.assertEqual(runner.message_hub.get_info('epoch'), 9)
|
|
|
|
def test_before_train_iter(self):
|
|
# single optimizer
|
|
cfg = copy.deepcopy(self.epoch_based_cfg)
|
|
lr = cfg.optim_wrapper.optimizer.lr
|
|
runner = self.build_runner(cfg)
|
|
# set iter
|
|
runner.train_loop._iter = 9
|
|
# build optim wrapper
|
|
runner.optim_wrapper = runner.build_optim_wrapper(runner.optim_wrapper)
|
|
hook = self._get_runtime_info_hook(runner)
|
|
hook.before_train_iter(runner, batch_idx=2, data_batch=None)
|
|
self.assertEqual(runner.message_hub.get_info('iter'), 9)
|
|
self.assertEqual(
|
|
runner.message_hub.get_scalar('train/lr').current(), lr)
|
|
|
|
with self.assertRaisesRegex(AssertionError,
|
|
'runner.optim_wrapper.get_lr()'):
|
|
runner.optim_wrapper = Mock()
|
|
runner.optim_wrapper.get_lr = Mock(return_value='error type')
|
|
hook.before_train_iter(runner, batch_idx=2, data_batch=None)
|
|
|
|
# multiple optimizers
|
|
model = nn.ModuleDict(
|
|
dict(
|
|
layer1=nn.Linear(1, 1),
|
|
layer2=nn.Linear(1, 1),
|
|
))
|
|
optim1 = SGD(model.layer1.parameters(), lr=0.01)
|
|
optim2 = SGD(model.layer2.parameters(), lr=0.02)
|
|
optim_wrapper1 = OptimWrapper(optim1)
|
|
optim_wrapper2 = OptimWrapper(optim2)
|
|
optim_wrapper_dict = OptimWrapperDict(
|
|
key1=optim_wrapper1, key2=optim_wrapper2)
|
|
runner.optim_wrapper = optim_wrapper_dict
|
|
hook.before_train_iter(runner, batch_idx=2, data_batch=None)
|
|
self.assertEqual(
|
|
runner.message_hub.get_scalar('train/key1.lr').current(), 0.01)
|
|
self.assertEqual(
|
|
runner.message_hub.get_scalar('train/key2.lr').current(), 0.02)
|
|
|
|
def test_after_train_iter(self):
|
|
cfg = copy.deepcopy(self.epoch_based_cfg)
|
|
runner = self.build_runner(cfg)
|
|
hook = self._get_runtime_info_hook(runner)
|
|
hook.after_train_iter(
|
|
runner, batch_idx=2, data_batch=None, outputs={'loss_cls': 1.111})
|
|
self.assertEqual(
|
|
runner.message_hub.get_scalar('train/loss_cls').current(), 1.111)
|
|
|
|
def test_after_val_epoch(self):
|
|
cfg = copy.deepcopy(self.epoch_based_cfg)
|
|
runner = self.build_runner(cfg)
|
|
hook = self._get_runtime_info_hook(runner)
|
|
hook.after_val_epoch(runner, metrics={'acc': 0.8})
|
|
self.assertEqual(
|
|
runner.message_hub.get_scalar('val/acc').current(), 0.8)
|
|
|
|
def test_after_test_epoch(self):
|
|
cfg = copy.deepcopy(self.epoch_based_cfg)
|
|
runner = self.build_runner(cfg)
|
|
hook = self._get_runtime_info_hook(runner)
|
|
hook.after_test_epoch(runner, metrics={'acc': 0.8})
|
|
self.assertEqual(
|
|
runner.message_hub.get_scalar('test/acc').current(), 0.8)
|
|
|
|
def _get_runtime_info_hook(self, runner):
|
|
for hook in runner.hooks:
|
|
if isinstance(hook, RuntimeInfoHook):
|
|
return hook
|