mmengine/examples/llama2/generate.py

37 lines
1.0 KiB
Python

import argparse
import torch
from transformers import AutoTokenizer, LlamaForCausalLM
# flake8: noqa
prompt = """Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
Imagine you are from the 1700s. Try to write a sentence in the language used in that era.
### Response:"""
def parse_args():
parser = argparse.ArgumentParser(description='llama2 inference')
parser.add_argument('checkpoint', type=str)
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
tokenizer = AutoTokenizer.from_pretrained(args.checkpoint)
model = LlamaForCausalLM.from_pretrained(args.checkpoint).half().cuda()
model.eval()
inputs = tokenizer(prompt, return_tensors='pt')
with torch.no_grad():
generate_ids = model.generate(inputs.input_ids.cuda(), max_length=300)
print(
tokenizer.batch_decode(
generate_ids,
skip_special_tokens=True,
clean_up_tokenization_spaces=False)[0])