mmfewshot/tools/test.py

208 lines
7.9 KiB
Python
Raw Normal View History

2021-05-15 22:47:59 +08:00
import argparse
import os
import warnings
import mmcv
import torch
from mmcv import Config, DictAction
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmcv.runner import (get_dist_info, init_dist, load_checkpoint,
wrap_fp16_model)
import mmfewshot # noqa: F401, F403
2021-05-16 16:29:24 +08:00
from mmfewshot.apis.test import multi_gpu_test, single_gpu_test
from mmfewshot.builders import build_dataloader, build_dataset, build_model
from mmfewshot.utils.check_config import check_config
2021-05-15 22:47:59 +08:00
def parse_args():
parser = argparse.ArgumentParser(
2021-05-16 16:29:24 +08:00
description='MMFewShot test (and eval) a model')
2021-05-15 22:47:59 +08:00
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoint file')
parser.add_argument('--out', help='output result file in pickle format')
parser.add_argument(
'--eval',
type=str,
nargs='+',
2021-05-16 16:29:24 +08:00
help='evaluation metrics, which depends on the dataset '
'of specific task_type, e.g., "bbox","segm", "proposal" for '
'COCO, and "mAP", "recall" for PASCAL VOC in'
'MMDet or "accuracy", "precision", "recall", "f1_score", '
'"support" for single label dataset, and "mAP", "CP", "CR",'
'"CF1", "OP", "OR", "OF1" for '
'multi-label dataset in MMCLS')
2021-05-15 22:47:59 +08:00
parser.add_argument('--show', action='store_true', help='show results')
parser.add_argument(
'--show-dir', help='directory where painted images will be saved')
parser.add_argument(
'--show-score-thr',
type=float,
default=0.3,
2021-05-16 16:29:24 +08:00
help='score threshold (default: 0.3),Only work when task_type is mmdet'
)
2021-05-15 22:47:59 +08:00
parser.add_argument(
'--gpu-collect',
action='store_true',
help='whether to use gpu to collect results.')
parser.add_argument(
'--tmpdir',
help='tmp directory used for collecting results from multiple '
'workers, available when gpu-collect is not specified')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
parser.add_argument(
'--options',
nargs='+',
action=DictAction,
help='custom options for evaluation, the key-value pair in xxx=yyy '
'format will be kwargs for dataset.evaluate() function (deprecate), '
'change to --eval-options instead.')
parser.add_argument(
'--eval-options',
nargs='+',
action=DictAction,
help='custom options for evaluation, the key-value pair in xxx=yyy '
'format will be kwargs for dataset.evaluate() function')
2021-05-16 16:29:24 +08:00
parser.add_argument(
'--show-options',
nargs='+',
action=DictAction,
help='custom options for show_result. key-value pair in xxx=yyy.'
'Check available options in `model.show_result`. Only work when '
'task_type is mmcls')
2021-05-15 22:47:59 +08:00
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
if args.options and args.eval_options:
raise ValueError(
'--options and --eval-options cannot be both '
'specified, --options is deprecated in favor of --eval-options')
if args.options:
warnings.warn('--options is deprecated in favor of --eval-options')
args.eval_options = args.options
return args
def main():
args = parse_args()
assert args.out or args.eval or args.format_only or args.show \
or args.show_dir, \
('Please specify at least one operation (save/eval/format/show the '
'results / save the results) with the argument "--out", "--eval"',
'"--show" or "--show-dir"')
2021-05-15 22:47:59 +08:00
if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
raise ValueError('The output file must be a pkl file.')
cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
2021-05-16 16:29:24 +08:00
cfg = check_config(cfg)
2021-05-15 22:47:59 +08:00
# import modules from string list.
if cfg.get('custom_imports', None):
from mmcv.utils import import_modules_from_strings
import_modules_from_strings(**cfg['custom_imports'])
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
cfg.model.pretrained = None
if cfg.model.get('neck'):
if isinstance(cfg.model.neck, list):
for neck_cfg in cfg.model.neck:
if neck_cfg.get('rfp_backbone'):
if neck_cfg.rfp_backbone.get('pretrained'):
neck_cfg.rfp_backbone.pretrained = None
elif cfg.model.neck.get('rfp_backbone'):
if cfg.model.neck.rfp_backbone.get('pretrained'):
cfg.model.neck.rfp_backbone.pretrained = None
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
distributed = False
else:
distributed = True
init_dist(args.launcher, **cfg.dist_params)
# build the dataloader
dataset = build_dataset(cfg.data.test)
data_loader = build_dataloader(
dataset,
2021-05-16 16:29:24 +08:00
samples_per_gpu=cfg.data.samples_per_gpu,
2021-05-15 22:47:59 +08:00
workers_per_gpu=cfg.data.workers_per_gpu,
dist=distributed,
2021-05-16 16:29:24 +08:00
shuffle=False,
round_up=False)
2021-05-15 22:47:59 +08:00
# build the model and load checkpoint
cfg.model.train_cfg = None
2021-05-16 16:29:24 +08:00
model = build_model(cfg.model)
2021-05-15 22:47:59 +08:00
fp16_cfg = cfg.get('fp16', None)
if fp16_cfg is not None:
wrap_fp16_model(model)
checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu')
# old versions did not save class info in checkpoints, this walkaround is
# for backward compatibility
if 'CLASSES' in checkpoint.get('meta', {}):
model.CLASSES = checkpoint['meta']['CLASSES']
else:
model.CLASSES = dataset.CLASSES
if not distributed:
model = MMDataParallel(model, device_ids=[0])
2021-05-16 16:29:24 +08:00
if cfg.task_type == 'mmdet':
show_kwargs = dict(show_score_thr=args.show_score_thr)
elif cfg.task_type == 'mmcls':
show_kwargs = {} if args.show_options is None\
else args.show_options
2021-05-15 22:47:59 +08:00
outputs = single_gpu_test(model, data_loader, args.show, args.show_dir,
2021-05-16 16:29:24 +08:00
**show_kwargs)
2021-05-15 22:47:59 +08:00
else:
model = MMDistributedDataParallel(
model.cuda(),
device_ids=[torch.cuda.current_device()],
broadcast_buffers=False)
outputs = multi_gpu_test(model, data_loader, args.tmpdir,
args.gpu_collect)
rank, _ = get_dist_info()
if rank == 0:
if args.out:
print(f'\nwriting results to {args.out}')
mmcv.dump(outputs, args.out)
kwargs = {} if args.eval_options is None else args.eval_options
if args.format_only:
dataset.format_results(outputs, **kwargs)
if args.eval:
eval_kwargs = cfg.get('evaluation', {}).copy()
# hard-code way to remove EvalHook args
for key in [
'interval', 'tmpdir', 'start', 'gpu_collect', 'save_best',
'rule'
]:
eval_kwargs.pop(key, None)
eval_kwargs.update(dict(metric=args.eval, **kwargs))
print(dataset.evaluate(outputs, **eval_kwargs))
if __name__ == '__main__':
main()