[Docs] Update readme according to the guideline (#95)

pull/98/head
BigDong 2022-06-08 23:34:38 +08:00 committed by GitHub
parent 62752111e5
commit a9e1eb5fea
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 129 additions and 103 deletions

117
README.md
View File

@ -1,5 +1,5 @@
<div align="center">
<img src="resources/mmfewshot-logo.png" width="500px"/>
<img src="resources/mmfewshot-logo.png" width="500"/>
<div>&nbsp;</div>
<div align="center">
<b><font size="5">OpenMMLab website</font></b>
@ -17,27 +17,35 @@
</sup>
</div>
<div>&nbsp;</div>
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/mmfewshot)](https://pypi.org/project/mmfewshot/)
[![PyPI](https://img.shields.io/pypi/v/mmfewshot)](https://pypi.org/project/mmfewshot)
[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmfewshot.readthedocs.io/en/latest/)
[![badge](https://github.com/open-mmlab/mmfewshot/workflows/build/badge.svg)](https://github.com/open-mmlab/mmfewshot/actions)
[![codecov](https://codecov.io/gh/open-mmlab/mmfewshot/branch/master/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmfewshot)
[![license](https://img.shields.io/github/license/open-mmlab/mmfewshot.svg)](https://github.com/open-mmlab/mmfewshot/blob/master/LICENSE)
[📘Documentation](https://mmfewshot.readthedocs.io/) |
[🛠Installation](https://mmfewshot.readthedocs.io/en/latest/install.html) |
[👀Model Zoo](https://mmfewshot.readthedocs.io/en/latest/model_zoo.html) |
[🆕Update News](https://mmfewshot.readthedocs.io/en/latest/changelog.html) |
[🤔Reporting Issues](https://github.com/open-mmlab/mmfewshot/issues/new/choose)
</div>
## Introduction
<div align="center">
English | [简体中文](README_zh-CN.md)
[![Documentation](https://readthedocs.org/projects/mmfewshot/badge/?version=latest)](https://mmfewshot.readthedocs.io/en/latest/?badge=latest)
[![actions](https://github.com/open-mmlab/mmfewshot/workflows/build/badge.svg)](https://github.com/open-mmlab/mmfewshot/actions)
[![codecov](https://codecov.io/gh/open-mmlab/mmfewshot/branch/main/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmfewshot)
[![PyPI](https://badge.fury.io/py/mmfewshot.svg)](https://pypi.org/project/mmfewshot/)
[![LICENSE](https://img.shields.io/github/license/open-mmlab/mmfewshot.svg)](https://github.com/open-mmlab/mmfewshot/blob/master/LICENSE)
[![Average time to resolve an issue](https://isitmaintained.com/badge/resolution/open-mmlab/mmfewshot.svg)](https://github.com/open-mmlab/mmfewshot/issues)
[![Percentage of issues still open](https://isitmaintained.com/badge/open/open-mmlab/mmfewshot.svg)](https://github.com/open-mmlab/mmfewshot/issues)
</div>
## Introduction
mmfewshot is an open source few shot learning toolbox based on PyTorch. It is a part of the [OpenMMLab](https://open-mmlab.github.io/) project.
The master branch works with **PyTorch 1.5+**.
The compatibility to earlier versions of PyTorch is not fully tested.
Documentation: https://mmfewshot.readthedocs.io/en/latest/.
<div align="left">
<img src="resources/demo.png"/>
</div>
@ -57,12 +65,42 @@ Documentation: https://mmfewshot.readthedocs.io/en/latest/.
The toolbox provides strong baselines and state-of-the-art methods in few shot classification and detection.
## License
## What's New
This project is released under the [Apache 2.0 license](LICENSE).
v0.1.0 was released in 24/11/2021.
Please refer to [changelog.md](docs/en/changelog.md) for details and release history.
## Model Zoo
## Installation & Dataset Preparation
MMFewShot depends on [PyTorch](https://pytorch.org/) and [MMCV](https://github.com/open-mmlab/mmcv).
Please refer to [install.md](/docs/en/install.md) for installation of MMFewShot and [data preparation](tools/data/README.md) for dataset preparation.
## Getting Started
If you are new of few shot learning, you can start with [learn the basics](docs/en/intro.md).
If you are familiar with it, check out [getting_started.md](docs/en/get_started.md) for the basic usage of mmfewshot.
Refer to the below tutorials to dive deeper:
- Few Shot Classification
- [Overview](docs/en/classification/overview.md)
- [Config](docs/en/classification/customize_config.md)
- [Customize Dataset](docs/en/classification/customize_dataset.md)
- [Customize Model](docs/en/classification/customize_models.md)
- [Customize Runtime](docs/en/classification/customize_runtime.md)
- Few Shot Detection
- [Overview](docs/en/detection/overview.md)
- [Config](docs/en/detection/customize_config.md)
- [Customize Dataset](docs/en/detection/customize_dataset.md)
- [Customize Model](docs/en/detection/customize_models.md)
- [Customize Runtime](docs/en/detection/customize_runtime.md)
## Benchmark and model zoo
Results and models are available in the [model zoo](docs/en/model_zoo.md).
Supported algorithms:
<details open>
@ -91,35 +129,13 @@ Supported algorithms:
</details>
## Changelog
## Contributing
## Installation & Dataset Preparation
We appreciate all contributions to improve mmfewshot. Please refer to [CONTRIBUTING.md](https://github.com/open-mmlab/mmfewshot/blob/main/.github/CONTRIBUTING.md) in MMFewShot for the contributing guideline.
MMFewShot depends on [PyTorch](https://pytorch.org/) and [MMCV](https://github.com/open-mmlab/mmcv).
Please refer to [install.md](/docs/en/install.md) for installation of MMFewShot and [data preparation](tools/data/README.md) for dataset preparation.
## Acknowledgement
## Getting Started
If you are new of few shot learning, you can start with [learn the basics](docs/en/intro.md).
If you are familiar with it, check out [getting_started.md](docs/en/get_started.md) for the basic usage of mmfewshot.
Refer to the below tutorials to dive deeper:
- Few Shot Classification
- [Overview](docs/classification/overview.md)
- [Config](docs/classification/customize_config.md)
- [Customize Dataset](docs/classification/customize_dataset.md)
- [Customize Model](docs/classification/customize_models.md)
- [Customize Runtime](docs/classification/customize_runtime.md)
- Few Shot Detection
- [Overview](docs/detection/overview.md)
- [Config](docs/detection/customize_config.md)
- [Customize Dataset](docs/detection/customize_dataset.md)
- [Customize Model](docs/detection/customize_models.md)
- [Customize Runtime](docs/detection/customize_runtime.md)
mmfewshot is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors who implement their methods or add new features, as well as users who give valuable feedbacks. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new methods.
## Citation
@ -134,31 +150,28 @@ If you find this project useful in your research, please consider cite:
}
```
## Contributing
## License
We appreciate all contributions to improve mmfewshot. Please refer to [CONTRIBUTING.md](https://github.com/open-mmlab/mmfewshot/blob/main/.github/CONTRIBUTING.md) in MMFewShot for the contributing guideline.
## Acknowledgement
mmfewshot is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors who implement their methods or add new features, as well as users who give valuable feedbacks. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new methods.
This project is released under the [Apache 2.0 license](LICENSE).
## Projects in OpenMMLab
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab foundational library for computer vision.
- [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages.
- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab image classification toolbox and benchmark.
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark.
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection.
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab rotated object detection toolbox and benchmark.
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark.
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition, and understanding toolbox.
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition and understanding toolbox.
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark.
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 3D human parametric model toolbox and benchmark.
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab self-supervised learning toolbox and benchmark.
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab model compression toolbox and benchmark.
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab fewshot learning toolbox and benchmark.
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab self-supervised learning Toolbox and Benchmark.
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab Model Compression Toolbox and Benchmark.
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab FewShot Learning Toolbox and Benchmark.
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark.
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark.
- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab optical flow toolbox and benchmark.
- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab image and video editing toolbox.
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab image and video generative models toolbox.
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab model deployment framework.
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab Generative Model toolbox and benchmark.
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMlab deep learning model deployment toolset.

View File

@ -2,14 +2,14 @@
<img src="resources/mmfewshot-logo.png" width="500px"/>
<div>&nbsp;</div>
<div align="center">
<b><font size="5">OpenMMLab website</font></b>
<b><font size="5">OpenMMLab 官网</font></b>
<sup>
<a href="https://openmmlab.com">
<i><font size="4">HOT</font></i>
</a>
</sup>
&nbsp;&nbsp;&nbsp;&nbsp;
<b><font size="5">OpenMMLab platform</font></b>
<b><font size="5">OpenMMLab 开放平台</font></b>
<sup>
<a href="https://platform.openmmlab.com">
<i><font size="4">TRY IT OUT</font></i>
@ -17,24 +17,38 @@
</sup>
</div>
<div>&nbsp;</div>
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/mmfewshot)](https://pypi.org/project/mmfewshot/)
[![PyPI](https://img.shields.io/pypi/v/mmfewshot)](https://pypi.org/project/mmfewshot)
[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmfewshot.readthedocs.io/en/latest/)
[![badge](https://github.com/open-mmlab/mmfewshot/workflows/build/badge.svg)](https://github.com/open-mmlab/mmfewshot/actions)
[![codecov](https://codecov.io/gh/open-mmlab/mmfewshot/branch/master/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmfewshot)
[![license](https://img.shields.io/github/license/open-mmlab/mmfewshot.svg)](https://github.com/open-mmlab/mmfewshot/blob/master/LICENSE)
[📘Documentation](https://mmfewshot.readthedocs.io/zh_CN/latest/) |
[🛠Installation](https://mmfewshot.readthedocs.io/zh_CN/latest/install.html) |
[👀Model Zoo](https://mmfewshot.readthedocs.io/zh_CN/latest/model_zoo.html) |
[🆕Update News](https://mmfewshot.readthedocs.io/zh_CN/latest/changelog.html) |
[🤔Reporting Issues](https://github.com/open-mmlab/mmfewshot/issues/new/choose)
</div>
<div align="center">
[English](/README.md) | 简体中文
</div>
## Introduction
[English](README.md) | 简体中文
[![Documentation](https://readthedocs.org/projects/mmfewshot/badge/?version=latest)](https://mmfewshot.readthedocs.io/en/latest/?badge=latest)
[![actions](https://github.com/open-mmlab/mmfewshot/workflows/build/badge.svg)](https://github.com/open-mmlab/mmfewshot/actions)
[![codecov](https://codecov.io/gh/open-mmlab/mmfewshot/branch/main/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmfewshot)
[![PyPI](https://badge.fury.io/py/mmfewshot.svg)](https://pypi.org/project/mmfewshot/)
[![LICENSE](https://img.shields.io/github/license/open-mmlab/mmfewshot.svg)](https://github.com/open-mmlab/mmfewshot/blob/master/LICENSE)
[![Average time to resolve an issue](https://isitmaintained.com/badge/resolution/open-mmlab/mmfewshot.svg)](https://github.com/open-mmlab/mmfewshot/issues)
[![Percentage of issues still open](https://isitmaintained.com/badge/open/open-mmlab/mmfewshot.svg)](https://github.com/open-mmlab/mmfewshot/issues)
MMFewShot 是一款基于 PyTorch 的少样本学习代码库,是 [OpenMMLab](http://openmmlab.org/) 项目的成员之一。
主分支代码目前支持 **PyTorch 1.5 以上**的版本。
<div align="left">
<img src="resources/demo.png"/>
</div>
### 主要特性
- **支持多种少样本任务**
@ -49,17 +63,41 @@ MMFewShot 是一款基于 PyTorch 的少样本学习代码库,是 [OpenMMLab](
MMFewShot 提供了少样本分类和检测任务中最先进的算法和强大的基准模型.
<div align="left">
<img src="resources/demo.png"/>
</div>
## 更新
## 开源许可证
v0.1.0 版本已于 2021 年 11 月 24 日发布,可通过查阅[更新日志](docs/zh_cn/changelog.md)了解更多细节以及发布历史。
该项目采用 [Apache 2.0 开源许可证](LICENSE)
## 安装与准备数据集
MMFewShot 依赖 [PyTorch](https://pytorch.org/) 和 [MMCV](https://github.com/open-mmlab/mmcv) 。
请参考[安装文档](docs/zh_cn/install.md)进行安装和参考[数据准备](tools/data/README.md)准备数据集。
## 开始使用 MMFewShot
如果初次了解少样本学习,你可以从[基础介绍](docs/en/intro.md)开始了解少样本学习的基本概念和 MMFewShot 的框架。
如果对少样本学习很熟悉,请参考[使用教程](docs/zh_cn/get_started.md)获取MMFewShot的基本用法。
MMFewShot 也提供了其他更详细的教程,包括:
- 少样本分类
- [概览](docs/zh_cn/classification/overview.md)
- [配置文件](docs/zh_cn/classification/customize_config.md)
- [添加数据集](docs/zh_cn/classification/customize_dataset.md)
- [添加新模型](docs/zh_cn/classification/customize_models.md)
- [自定义模型运行环境](docs/zh_cn/classification/customize_runtime.md)。
- 少样本检测
- [概览](docs/zh_cn/detection/overview.md)
- [配置文件](docs/zh_cn/detection/customize_config.md)
- [添加数据集](docs/zh_cn/detection/customize_dataset.md)
- [添加新模型](docs/zh_cn/detection/customize_models.md)
- [自定义模型运行环境](docs/zh_cn/detection/customize_runtime.md)。
## 基准测试和模型库
测试结果和模型可以在[模型库](docs/model_zoo.md)中找到。
本工具箱支持的各个模型的结果和设置都可以在[模型库](docs/en/model_zoo.md)页面中查看
已支持的算法:
@ -89,37 +127,7 @@ MMFewShot 是一款基于 PyTorch 的少样本学习代码库,是 [OpenMMLab](
</details>
## 更新记录
## 安装与准备数据集
MMFewShot 依赖 [PyTorch](https://pytorch.org/) 和 [MMCV](https://github.com/open-mmlab/mmcv) 。
请参考[安装文档](docs/zh_cn/install.md)进行安装和参考[数据准备](tools/data/README.md)准备数据集。
## 快速入门
如果初次了解少样本学习,你可以从[基础介绍](docs/en/intro.md)开始了解少样本学习的基本概念和 MMFewShot 的框架。
如果对少样本学习很熟悉,请参考[使用教程](docs/en/get_started.md)获取MMFewShot的基本用法。
MMFewShot 也提供了其他更详细的教程,包括:
- 少样本分类
- [概览](docs/classification/overview.md)
- [配置文件](docs/classification/customize_config.md)
- [添加数据集](docs/classification/customize_dataset.md)
- [添加新模型](docs/classification/customize_models.md)
- [自定义模型运行环境](docs/classification/customize_runtime.md)。
- 少样本检测
- [概览](docs/detection/overview.md)
- [配置文件](docs/detection/customize_config.md)
- [添加数据集](docs/detection/customize_dataset.md)
- [添加新模型](docs/detection/customize_models.md)
- [自定义模型运行环境](docs/detection/customize_runtime.md)。
## 贡献指南
## 参与贡献
我们感谢所有的贡献者为改进和提升 MMFewShot 所作出的努力。请参考[贡献指南](https://github.com/open-mmlab/mmfewshot/blob/main/.github/CONTRIBUTING.md)来了解参与项目贡献的相关指引。
@ -142,15 +150,20 @@ MMFewShot 是一款由不同学校和公司共同贡献的开源项目。我们
}
```
## 许可
该项目遵循[Apache 2.0 license](/LICENSE)开源协议。
## OpenMMLab 的其他项目
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab计算机视觉基础库
- [MIM](https://github.com/open-mmlab/mim): MIM 是 OpenMMlab 项目、算法、模型的统一入口
- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab 图像分类工具箱
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab 目标检测工具箱
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab 新一代通用 3D 目标检测平台
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab 旋转框检测工具箱与测试基准
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab 语义分割工具箱
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab 全流程文字检测识别理解工具
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab 全流程文字检测识别理解工具
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab 姿态估计工具箱
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 人体参数化模型工具箱与测试基准
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab 自监督学习工具箱与测试基准
@ -168,7 +181,7 @@ MMFewShot 是一款由不同学校和公司共同贡献的开源项目。我们
扫描下方的二维码可关注 OpenMMLab 团队的 [知乎官方账号](https://www.zhihu.com/people/openmmlab),加入 OpenMMLab 团队的 [官方交流 QQ 群](https://jq.qq.com/?_wv=1027&k=aCvMxdr3)
<div align="center">
<img src="resources/zhihu_qrcode.jpg" height="400" /> <img src="resources/qq_group_qrcode.jpg" height="400" />
<img src="https://user-images.githubusercontent.com/24663779/116371114-a8005e80-a83d-11eb-9123-17fc9cfe7475.jpg" height="400" /> <img src="https://user-images.githubusercontent.com/24663779/116371171-b8b0d480-a83d-11eb-9514-247f0e5dbfa3.jpg" height="400" />
</div>
我们会在 OpenMMLab 社区为大家