3.9 KiB
3.9 KiB
MatchingNet (NeurIPS'2016)
@inproceedings{vinyals2016matching,
title={Matching networks for one shot learning},
author={Vinyals, Oriol and Blundell, Charles and Lillicrap, Tim and Wierstra, Daan and others},
booktitle={Advances in Neural Information Processing Systems},
pages={3630--3638},
year={2016}
}
How to Reproduce MatchingNet
It consists of two steps:
-
Step1: Base training
- use all the images of base classes to train a base model.
- use validation set to select the best model.
-
Step2: Meta Testing:
- use best model from step1.
An example of CUB dataset with Conv4
# base training
python ./tools/classification/train.py \
configs/classification/matching_net/cub/matching-net_conv4_1xb105_cub_5way-1shot.py
# meta testing
python ./tools/classification/test.py \
configs/classification/matching_net/cub/matching-net_conv4_1xb105_cub_5way-1shot.py \
work_dir/matching-net_conv4_1xb105_cub_5way-1shot/best_accuracy_mean.pth
Note:
- All the result are trained with single gpu.
- The base training of 1 shot and 5 shot use same training setting, but different validation setting.
Results on CUB dataset of 1000 episodes
Arch | Input Size | Batch Size | way | shot | mean Acc | std | ckpt | log |
---|---|---|---|---|---|---|---|---|
conv4 | 84x84 | 64 | 5 | 1 | - | - | ckpt | log |
conv4 | 84x84 | 64 | 5 | 5 | - | - | ckpt | log |
resnet12 | 84x84 | 64 | 5 | 1 | - | - | ckpt | log |
resnet12 | 84x84 | 64 | 5 | 5 | - | - | ckpt | log |
Results on Mini-ImageNet dataset of 1000 episodes
Arch | Input Size | Batch Size | way | shot | mean Acc | std | ckpt | log |
---|---|---|---|---|---|---|---|---|
conv4 | 84x84 | 64 | 5 | 1 | - | - | ckpt | log |
conv4 | 84x84 | 64 | 5 | 5 | - | - | ckpt | log |
resnet12 | 84x84 | 64 | 5 | 1 | - | - | ckpt | log |
resnet12 | 84x84 | 64 | 5 | 5 | - | - | ckpt | log |
Results on Tiered-ImageNet of 1000 episodes
Arch | Input Size | Batch Size | way | shot | mean Acc | std | ckpt | log |
---|---|---|---|---|---|---|---|---|
conv4 | 84x84 | 64 | 5 | 1 | - | - | ckpt | log |
conv4 | 84x84 | 64 | 5 | 5 | - | - | ckpt | log |
resnet12 | 84x84 | 64 | 5 | 1 | - | - | ckpt | log |
resnet12 | 84x84 | 64 | 5 | 5 | - | - | ckpt | log |