Linyiqi fdb8e999ed
upgrade version (#34)
* upgrade version

* fix comments
2021-09-26 14:24:52 +08:00

226 lines
8.6 KiB
Python

import argparse
import os
import warnings
import mmcv
import torch
from mmcv import Config, DictAction
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmcv.runner import (get_dist_info, init_dist, load_checkpoint,
wrap_fp16_model)
from mmfewshot.detection.datasets import (build_dataloader, build_dataset,
get_copy_dataset_type)
from mmfewshot.detection.models import build_detector
def parse_args():
parser = argparse.ArgumentParser(
description='MMFewShot test (and eval) a model')
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoint file')
parser.add_argument('--out', help='output result file in pickle format')
parser.add_argument(
'--eval',
type=str,
nargs='+',
help='evaluation metrics, which depends on the dataset, e.g., "bbox",'
' "segm", "proposal" for COCO, and "mAP", "recall" for PASCAL VOC')
parser.add_argument('--show', action='store_true', help='show results')
parser.add_argument(
'--show-dir', help='directory where painted images will be saved')
parser.add_argument(
'--show-score-thr',
type=float,
default=0.3,
help='score threshold (default: 0.3)')
parser.add_argument(
'--gpu-collect',
action='store_true',
help='whether to use gpu to collect results.')
parser.add_argument(
'--tmpdir',
help='tmp directory used for collecting results from multiple '
'workers, available when gpu-collect is not specified')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
parser.add_argument(
'--options',
nargs='+',
action=DictAction,
help='custom options for evaluation, the key-value pair in xxx=yyy '
'format will be kwargs for dataset.evaluate() function (deprecate), '
'change to --eval-options instead.')
parser.add_argument(
'--eval-options',
nargs='+',
action=DictAction,
help='custom options for evaluation, the key-value pair in xxx=yyy '
'format will be kwargs for dataset.evaluate() function')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
if args.options and args.eval_options:
raise ValueError(
'--options and --eval-options cannot be both '
'specified, --options is deprecated in favor of --eval-options')
if args.options:
warnings.warn('--options is deprecated in favor of --eval-options')
args.eval_options = args.options
args.cfg_options = args.options
return args
def main():
args = parse_args()
assert args.out or args.eval or args.show \
or args.show_dir, (
'Please specify at least one operation (save/eval/show the '
'results / save the results) with the argument "--out", "--eval"',
'"--show" or "--show-dir"')
if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
raise ValueError('The output file must be a pkl file.')
cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
# import modules from string list.
if cfg.get('custom_imports', None):
from mmcv.utils import import_modules_from_strings
import_modules_from_strings(**cfg['custom_imports'])
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
cfg.model.pretrained = None
# currently only support single images testing
samples_per_gpu = cfg.data.test.pop('samples_per_gpu', 1)
assert samples_per_gpu == 1, 'currently only support single images testing'
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
distributed = False
else:
distributed = True
init_dist(args.launcher, **cfg.dist_params)
# build the dataloader
dataset = build_dataset(cfg.data.test)
data_loader = build_dataloader(
dataset,
samples_per_gpu=samples_per_gpu,
workers_per_gpu=cfg.data.workers_per_gpu,
dist=distributed,
shuffle=False)
# pop frozen_parameters
cfg.model.pop('frozen_parameters', None)
# build the model and load checkpoint
cfg.model.train_cfg = None
model = build_detector(cfg.model)
fp16_cfg = cfg.get('fp16', None)
if fp16_cfg is not None:
wrap_fp16_model(model)
checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu')
# old versions did not save class info in checkpoints, this walkaround is
# for backward compatibility
if 'CLASSES' in checkpoint.get('meta', {}):
model.CLASSES = checkpoint['meta']['CLASSES']
else:
model.CLASSES = dataset.CLASSES
# for meta-learning methods which require support template dataset
# for model initialization.
if cfg.data.get('model_init', None) is not None:
cfg.data.model_init.pop('copy_from_train_dataset')
model_init_samples_per_gpu = cfg.data.model_init.pop(
'samples_per_gpu', 1)
model_init_workers_per_gpu = cfg.data.model_init.pop(
'workers_per_gpu', 1)
if cfg.data.model_init.get('ann_cfg', None) is None:
assert checkpoint['meta'].get('model_init_ann_cfg',
None) is not None
cfg.data.model_init.type = \
get_copy_dataset_type(cfg.data.model_init.type)
cfg.data.model_init.ann_cfg = \
checkpoint['meta']['model_init_ann_cfg']
model_init_dataset = build_dataset(cfg.data.model_init)
# disable dist to make all rank get same data
model_init_dataloader = build_dataloader(
model_init_dataset,
samples_per_gpu=model_init_samples_per_gpu,
workers_per_gpu=model_init_workers_per_gpu,
dist=False,
shuffle=False)
if not distributed:
model = MMDataParallel(model, device_ids=[0])
show_kwargs = dict(show_score_thr=args.show_score_thr)
if cfg.data.get('model_init', None) is not None:
from mmfewshot.detection.apis import (single_gpu_model_init,
single_gpu_test)
single_gpu_model_init(model, model_init_dataloader)
else:
from mmdet.apis.test import single_gpu_test
outputs = single_gpu_test(model, data_loader, args.show, args.show_dir,
**show_kwargs)
else:
model = MMDistributedDataParallel(
model.cuda(),
device_ids=[torch.cuda.current_device()],
broadcast_buffers=False)
if cfg.data.get('model_init', None) is not None:
from mmfewshot.detection.apis import (multi_gpu_model_init,
multi_gpu_test)
multi_gpu_model_init(model, model_init_dataloader)
else:
from mmdet.apis.test import multi_gpu_test
outputs = multi_gpu_test(
model,
data_loader,
args.tmpdir,
args.gpu_collect,
)
rank, _ = get_dist_info()
if rank == 0:
if args.out:
print(f'\nwriting results to {args.out}')
mmcv.dump(outputs, args.out)
kwargs = {} if args.eval_options is None else args.eval_options
if args.eval:
eval_kwargs = cfg.get('evaluation', {}).copy()
# hard-code way to remove EvalHook args
for key in [
'interval', 'tmpdir', 'start', 'gpu_collect', 'save_best',
'rule'
]:
eval_kwargs.pop(key, None)
eval_kwargs.update(dict(metric=args.eval, **kwargs))
print(dataset.evaluate(outputs, **eval_kwargs))
if __name__ == '__main__':
main()